• 제목/요약/키워드: Magnetic Resonance Method

검색결과 861건 처리시간 0.026초

Principles of Magnetic Resonance Angiography Techniques

  • Shin, Taehoon
    • Investigative Magnetic Resonance Imaging
    • /
    • 제25권4호
    • /
    • pp.209-217
    • /
    • 2021
  • Magnetic resonance angiography (MRA) plays an important role in accurate diagnosis and appropriate treatment planning for patients with arterial disease. Contrast-enhanced (CE) MRA is fast and robust, offering hemodynamic information of arterial flow, but involves the risk of a side effect called nephrogenic systemic fibrosis. Various non-contrast-enhanced (NCE) MRA techniques have been developed by utilizing the fact that arterial blood is moving fast compared to background tissues. NCE MRA is completely free of any safety issues, but has different drawbacks for various approaches. This review article describes basic principles of CE and NCE MRA techniques with a focus on how to generate angiographic image contrast from a pulse sequence perspective. Advantages, pitfalls, and key applications are also discussed for each MRA method.

A Study on the Difference Method of Magnetic Resonance Signal Measurement when Using Multi-channel Coil and Parallel Imaging

  • Choi, Kwan-Woo;Lee, Ho-Beom;Son, Soon-Yong;Jeong, Mi-Ae
    • Journal of Magnetics
    • /
    • 제22권2호
    • /
    • pp.220-226
    • /
    • 2017
  • SNR (signal to ratio) is a criterion for providing objective information for evaluating the performance of a magnetic resonance imaging device, and is an important measurement standard for evaluating the quality of MR (Magnetic Resonance) image. The purpose of our study is to evaluate the correct SNR measurement for multi-channel coil and parallel imaging. As a result of research, we found that both T1 and T2 weighted images show the narrowest confidence interval of the method recommended by NEMA (The National Electrical manufacturers Association) 1 having a single measurement method, whereas the ACR (American College of Radiology) measurement method using a multi-channel coil and a parallel imaging technique shows the widest confidence interval. There is a significance in that we quantitatively verified the inaccurate problems of a signal to noise ratio using a ACR measurement method when using a multi-channel coil and a parallel imaging technique of which method does not satisfy the preconditions that researchers could overlook.

Advances in Fast Vessel-Wall Magnetic Resonance Imaging Using High-Density Coil Arrays

  • Yin, Xuetong;Li, Nan;Jia, Sen;Zhang, Xiaoliang;Li, Ye
    • Investigative Magnetic Resonance Imaging
    • /
    • 제25권4호
    • /
    • pp.229-251
    • /
    • 2021
  • Arteriosclerosis is the leading cause of stroke, with a fatality rate surpassing that of ischemic heart disease. High-resolution vessel wall magnetic resonance imaging is generally recognized as a non-invasive and panoramic method for the evaluation of arterial plaque; however, this method requires improved signal-to-noise ratio and scanning speed. Recent advances in high-density head and neck coil arrays are characterized by broad coverage, multiple channels, and closefitting designs. This review analyzes fast magnetic resonance imaging from the perspective of accelerated algorithms for vessel wall imaging and demonstrates the need for effective algorithms for signal acquisition using advanced radiofrequency system. We summarize different phased-array structures under various experimental objectives and equipment conditions, introduce current research results, and propose prospective research studies in the future.

두 개의 송신코일을 갖는 위상 천이 자기 공진 무선 전력 전송 시스템 (Phase Shifted Magnetic Resonance Wireless Power Transfer System with Two Transmit Coils)

  • 정재엽;이강현
    • 전력전자학회논문지
    • /
    • 제23권4호
    • /
    • pp.290-293
    • /
    • 2018
  • This paper proposes a new magnetic resonant wireless power transfer system. Two transmitters are arranged to secure a range wider than the existing one-to-one resonance, thereby enhancing the practicality of the system. Two identical transmission units are arranged to strengthen the magnetic field and to subsequently increase the magnitude and distance of the power transmitted to the reception unit. A constant power can be maintained in a wide range through the phase control of different output powers according to the positions of the transmitting and receiving coils. A constant power can also be obtained by transmitting to the receiver. The experiment results show that the proposed method outperforms the conventional method.

113Cd and 133Cs NMR Study of Nucleus-Phonon Interactions in Linear-Chain Perovskite-Type CsCdBr3

  • Park, Sung Soo;Lim, Ae Ran
    • 한국자기공명학회논문지
    • /
    • 제20권4호
    • /
    • pp.109-113
    • /
    • 2016
  • Resonance frequencies from the $^{113}Cd$ and $^{133}Cs$ nuclear magnetic resonance (NMR) spectra for the $CsCdBr_3$ single crystal were measured at varying temperatures by the static NMR method. The temperature-dependent changes of these frequencies are related to the changing structural geometry of the ${CdBr_6}^{4-}$ units, which affects the environment of $^{133}Cs$. The spin-lattice relaxation rates ($1/T_1$) for the $^{113}Cd$ and $^{133}Cs$ nuclei were measured in order to obtain detailed information about the dynamics of $CsCdBr_3$ crystals. The dominant relaxation mechanisms for $^{113}Cd$ and $^{133}Cs$ nuclei are direct single-phonon and Raman spin-phonon processes, respectively.

Accelerating Magnetic Resonance Fingerprinting Using Hybrid Deep Learning and Iterative Reconstruction

  • Cao, Peng;Cui, Di;Ming, Yanzhen;Vardhanabhuti, Varut;Lee, Elaine;Hui, Edward
    • Investigative Magnetic Resonance Imaging
    • /
    • 제25권4호
    • /
    • pp.293-299
    • /
    • 2021
  • Purpose: To accelerate magnetic resonance fingerprinting (MRF) by developing a flexible deep learning reconstruction method. Materials and Methods: Synthetic data were used to train a deep learning model. The trained model was then applied to MRF for different organs and diseases. Iterative reconstruction was performed outside the deep learning model, allowing a changeable encoding matrix, i.e., with flexibility of choice for image resolution, radiofrequency coil, k-space trajectory, and undersampling mask. In vivo experiments were performed on normal brain and prostate cancer volunteers to demonstrate the model performance and generalizability. Results: In 400-dynamics brain MRF, direct nonuniform Fourier transform caused a slight increase of random fluctuations on the T2 map. These fluctuations were reduced with the proposed method. In prostate MRF, the proposed method suppressed fluctuations on both T1 and T2 maps. Conclusion: The deep learning and iterative MRF reconstruction method described in this study was flexible with different acquisition settings such as radiofrequency coils. It is generalizable for different in vivo applications.

냉동 방법에 따른 떡의 품질특성 변화 (Quality Characteristics of Korean Rice Cake by Freezing Methods)

  • 이혜진;구수경;최희돈;박종대;성정민;김영붕;최현욱;최윤상
    • 한국식품조리과학회지
    • /
    • 제33권2호
    • /
    • pp.148-154
    • /
    • 2017
  • Purpose: Frozen Korean traditional rice cakes (Sulgitteok and Garaetteok) were evaluated different conditions ($-20^{\circ}C$ and $-10^{\circ}C$) freezing (magnetic resonance quick freezing and air blast freezing) to study differences in quality characteristics. Methods: Experiments analyze Korean rice cakes for water content, water activity, color, textural properties, and sensory characteristics. Results: Moisture content showed high value at $-20^{\circ}C$ freezing regardless of freezing method. Water activity was higher at $-20^{\circ}C$ than $-10^{\circ}C$, and water activity higher magnetic resonance quick freezing than air blast freezing. The lightness values were higher $-20^{\circ}C$ freezing temperature compare to $-10^{\circ}C$ freezing temperature. Hardness and chewiness were the lowest $-20^{\circ}C$ magnetic resonance quick freezing. sensory evaluation both Sulgitteok and Garaetteok showed better overall acceptability at $-20^{\circ}C$ magnetic resonance quick freezing. Conclusion: Therefore, the $-20^{\circ}C$ magnetic resonance quick freezing method resulted in favorable textural properties and sensory characteristics.

HR-MAS NMR Technique for Metabolic Profiling of Powdery Ginseng

  • Yoon, Dahye;Jo, Ick-Hyun;Kim, Suhkmann
    • 한국자기공명학회논문지
    • /
    • 제20권3호
    • /
    • pp.82-86
    • /
    • 2016
  • Ginseng is used as a medicinal ingredient. The quality control of species, age, origin and manufacturing process is important. The metabolome of ginseng about quality was studied in many reports. Almost studies carried out the extract of ginseng, however, the reproducibility cannot be obtained using extracted sample. In this study, powdery ginseng samples were analyzed using high resolution-magic angle spinning nuclear magnetic resonance (HR-MAS NMR)-based metabolomics except extraction step. Sample was measured three times using 600 MHz NMR spectrometer equipped with nano probe. Reproducibility can be enhanced using this method and the metabolic profiles of ginseng were identified and quantified.

MAGNETIC RESONANCE ELECTRICAL IMPEDANCE TOMOGRAPHY

  • Kwon, Oh-In;Seo, Jin-Keun;Woo, Eung-Je;Yoon, Jeong-Rock
    • 대한수학회논문집
    • /
    • 제16권3호
    • /
    • pp.519-541
    • /
    • 2001
  • Magnetic Resonance Electrical Impedance Tomography(MREIT) is a new medical imaging technique for the cross-sectional conductivity distribution of a human body using both EIT(Electrical Impedance Tomography) and MRI(Magnetic Resonance Imaging) system. MREIT system was designed to enhance EIT imaging system which has inherent low sensitivity of boundary measurements to any changes of internal tissue conductivity values. MREIT utilizes a recent CDI (Current Density Imaging) technique of measuring the internal current density by means of MRI technique. In this paper, a mathematical modeling for MREIT and image reconstruction method called the alternating J-substitution algorithm are presented. Computer simulations show that the alternating J-substitution algorithm provides accurate high-resolution conductivity images.

  • PDF