Browse > Article
http://dx.doi.org/10.6564/JKMRS.2016.20.4.109

113Cd and 133Cs NMR Study of Nucleus-Phonon Interactions in Linear-Chain Perovskite-Type CsCdBr3  

Park, Sung Soo (Analytical Laboratory of Advanced Ferroelectric Crystals, Jeonju University)
Lim, Ae Ran (Analytical Laboratory of Advanced Ferroelectric Crystals, Jeonju University)
Publication Information
Journal of the Korean Magnetic Resonance Society / v.20, no.4, 2016 , pp. 109-113 More about this Journal
Abstract
Resonance frequencies from the $^{113}Cd$ and $^{133}Cs$ nuclear magnetic resonance (NMR) spectra for the $CsCdBr_3$ single crystal were measured at varying temperatures by the static NMR method. The temperature-dependent changes of these frequencies are related to the changing structural geometry of the ${CdBr_6}^{4-}$ units, which affects the environment of $^{133}Cs$. The spin-lattice relaxation rates ($1/T_1$) for the $^{113}Cd$ and $^{133}Cs$ nuclei were measured in order to obtain detailed information about the dynamics of $CsCdBr_3$ crystals. The dominant relaxation mechanisms for $^{113}Cd$ and $^{133}Cs$ nuclei are direct single-phonon and Raman spin-phonon processes, respectively.
Keywords
$CsCdBr_3$; Perovskite; Nuclear magnetic resonance; Nucleus-phonon interaction;
Citations & Related Records
연도 인용수 순위
  • Reference
1 F. Ramaz, R. M. Macfarlane, J. C. Vial, J. P. Chaminade, and F. Madeore, J. Lumin. 55, 173 (1993)   DOI
2 O. G. Noel, P. Goldner, and Y. L. Du, Spectrosc. Lett. 40, 247 (2007)   DOI
3 H.-Q. Wang, X.-Y. Kuang, and H.-F. Li, Chem. Phys. Lett. 460, 365 (2008)   DOI
4 L. Kang, D. M. Ramo, Z. Lin, P. D. Bristowe, J. Qin, and C. Chen, J. Mater. Chem. C1, 7363 (2013)   DOI
5 M. G. Brik, and A. A. Chaykin, J. Lumin. 145, 563 (2014)   DOI
6 B. Z. Malkin, A. I. Iskhakova, S. Kamba, J. Heber, M. Altwein, and G. Schaack, Phys. Rev. B 63, 75104 (2001)   DOI
7 O. Guillot-Noel, Ph. Goldner, and D. Gourier, Phys. Rev. A 66, 63813 (2002)   DOI
8 O. Guillot-Noel, Ph. Goldner, P. Higel, and D. Gourier, J. Phys. Condens. Matter 16, R1 (2004)   DOI
9 M. Mujaji, and J. D. Comins, Phys. Status Solidi C 1, 2372 (2004)   DOI
10 M. Karbowiak, A. Mech, and J. Drozdzynski, Chem. Phys. 308, 135 (2005)   DOI
11 S. P. Huang, W.-D. Cheng, D.-S. Wu, X. D. Li, Y.-Z. Lan, F.-F. Li, J. Shen, H. Zhang, and Y.-J. Gong, J. Appl. Phys. 99, 13516 (2006)   DOI
12 A. Ferrier, M. Velazquez, J.-L. Doualan, and R. Monwrge, J. Appl. Phys. 104, 123513 (2008)   DOI
13 A. Ferrier, M. Velazquez, J.-L. Doualan, and R. Monocorge, J. Lumin. 129, 1905 (2009)   DOI
14 Z.-X. Yan, X.-Y. Kuang, M.-L. Duan, C.-G. Li, and R.-P. Chai, Mol. Phys. 108, 1899 (2010)   DOI
15 R. Demirbilek, R. Feile, and A.C. Bozdogan, J. Lumin. 161, 174 (2015)   DOI
16 J. Neukum, N. Bodenschatz, and J. Heber, Phys. Rev. B 50, 3536 (1994)   DOI
17 Ph. Goldner, F. Pelle, D. Meichenin, and F. Auzel, J. Lumin. 71, 137 (1997)   DOI
18 G. L. McPherson, A. M. McPherson, and J. L. Atwood, J. Phys. Chem. Solids 41, 495 (1980)   DOI
19 A. Abragam, The Principles of Nuclear magnetism, Oxford University Press, Oxford (1961)
20 M. Igarashi, H. Kitagawa, S. Takagawa, R. Yoshizaki, Y. Abe, Z. Naturforsch. A47, 313 (1992)