Browse > Article
http://dx.doi.org/10.4283/JMAG.2017.22.2.220

A Study on the Difference Method of Magnetic Resonance Signal Measurement when Using Multi-channel Coil and Parallel Imaging  

Choi, Kwan-Woo (Asan Medical Center)
Lee, Ho-Beom (Asan Medical Center)
Son, Soon-Yong (Wonkwang Health Science University)
Jeong, Mi-Ae (Department of Dental Hygiene, Kangwon National University)
Publication Information
Abstract
SNR (signal to ratio) is a criterion for providing objective information for evaluating the performance of a magnetic resonance imaging device, and is an important measurement standard for evaluating the quality of MR (Magnetic Resonance) image. The purpose of our study is to evaluate the correct SNR measurement for multi-channel coil and parallel imaging. As a result of research, we found that both T1 and T2 weighted images show the narrowest confidence interval of the method recommended by NEMA (The National Electrical manufacturers Association) 1 having a single measurement method, whereas the ACR (American College of Radiology) measurement method using a multi-channel coil and a parallel imaging technique shows the widest confidence interval. There is a significance in that we quantitatively verified the inaccurate problems of a signal to noise ratio using a ACR measurement method when using a multi-channel coil and a parallel imaging technique of which method does not satisfy the preconditions that researchers could overlook.
Keywords
magnetic resonance; signal to ratio; parallel technique;
Citations & Related Records
연도 인용수 순위
  • Reference
1 D. W. McRobbie, Br. J. Radiol. 69, 827 (1996).
2 M. Firbank, A. Coulthard, R. Harrison, and E. Williams, Phys. Med. Biol. 44, 12 (1999).
3 L. Kaufman, D. M. Kramer, L. E. Crooks, and D. A. Ortendahl, Radiology 173, 1 (1989).   DOI
4 O. Dietrich, J. G. Raya, S. B. Reeder, M. F. Reiser, and S. O. Schoenberg, J. Magn. Reson. Imaging 26, 2 (2007).
5 P. M. Robson, A. K. Grant, A. J. Madhuranthakam, R. Lattanzi, D. K. Sodickson, and C. A. McKenzie, Magn. Reson. Med. 60, 4 (2008).
6 B. W. Murphy, P. L. Carson, J. H. Ellis, Y. Zhang, R. J. Hyde, and T. L. Chenevert, J. Magn. Reson. Imaging 11, 3 (1993).   DOI
7 F. L. Goerner and G. D. Clarke, Med. Phys. 38, 9 (2011).
8 H. Gudbjartsson and S. Patz, Magn. Reson. Med. 34, 6 (1995).
9 M. C. Steckner, B. Liu, and L. Ying, Med. Phys. 36, 2 (2009).
10 A. Deshmane, V. Gulani, M. A. Griswold, and N. Seiberlich, J. Magn. Reson. Imaging 36, 1 (2012).   DOI
11 D. K. Sodickson and W. J. Manning, Magn. Reson. Med. 38, 4 (1997).
12 K. P. Pruessmann, M. Weiger, M. B. Scheidegger, and P. Boesiger, Magn. Reson. Med. 42, 5 (1999).
13 No.1 ATG. Quality assurance methods and phantoms for magnetic resonance imaging: Report of AAPM nuclear magnetic resonance Task Group No.1 (1989).
14 Medicine AAoPi. Acceptance Testing and Quality Assurance Procedures for Magnetic Resonance Imaging Facilities. AAPM Report No.100 (2010).
15 Association NEM. Determination of signal-to-noise ratio (SNR) in diagnostic magnetic resonance imaging. NEMA standard publication MS. (2008).
16 E. G. Larsson, D. Erdogmus, R. Yan, J. C. Principe, and J. R. Fitzsimmons, J. Magn. Reson. 163, 1 (2003).   DOI
17 C. N. Wiens, S. J. Kisch, J. D. Willig-Onwuachi, and C. A. McKenzie, Official Journal of the Society of Magnetic Resonance in Medicine 66, 4 (2011).
18 H. Imai, T. Miyati, A. Ogura, T. Doi, T. Tsuchihashi, and Y. Machida, Nihon Hoshasen Gijutsu Gakkai Zasshi 64, 8 (2008).
19 M. C. Steckner, Med. Phys. 37, 9 (2010).
20 P. Kellman and E. R. McVeigh, Magn. Reson. Med. 54, 6 (2015).