Accelerating Magnetic Resonance Fingerprinting Using Hybrid Deep Learning and Iterative Reconstruction |
Cao, Peng
(Department of Diagnostic Radiology, The University of Hong Kong)
Cui, Di (Department of Diagnostic Radiology, The University of Hong Kong) Ming, Yanzhen (Department of Diagnostic Radiology, The University of Hong Kong) Vardhanabhuti, Varut (Department of Diagnostic Radiology, The University of Hong Kong) Lee, Elaine (Department of Diagnostic Radiology, The University of Hong Kong) Hui, Edward (Department of Rehabilitation Science, The Hong Kong Polytechnic University) |
1 | Luo G, Zhao N, Jiang W, Hui ES, Cao P. MRI reconstruction using deep Bayesian estimation. Magn Reson Med 2020;84:2246-2261 DOI |
2 | Cohen O, Zhu B, Rosen MS. MR fingerprinting Deep RecOnstruction NEtwork (DRONE). Magn Reson Med 2018;80:885-894 DOI |
3 | Chen Y, Fang Z, Hung SC, Chang WT, Shen D, Lin W. High-resolution 3D MR fingerprinting using parallel imaging and deep learning. Neuroimage 2020;206:116329 DOI |
4 | Yang Y, Xu Z, Song D. Missing value imputation for microRNA expression data by using a GO-based similarity measure. BMC Bioinformatics 2016;17 Suppl 1:10 |
5 | Barbieri M, Brizi L, Giampieri E, et al. Circumventing the curse of dimensionality in magnetic resonance fingerprinting through a deep learning approach. arXiv preprint arXiv:1811.11477, 2018 |
6 | Fang Z, Chen Y, Lin W, Shen D. Quantification of relaxation times in MR fingerprinting using deep learning. Proc Int Soc Magn Reson Med Sci Meet Exhib Int Soc Magn Reson Med Sci Meet Exhib 2017;25 |
7 | Fang Z, Chen Y, Hung SC, Zhang X, Lin W, Shen D. Submillimeter MR fingerprinting using deep learning-based tissue quantification. Magn Reson Med 2020;84:579-591 DOI |
8 | Virtue P, Yu SX, Lustig M. Better than real: complex-valued neural nets for MRI fingerprinting. 2017 IEEE International Conference on Image Processing (ICIP), 2017:3953-3957 |
9 | Badve C, Yu A, Dastmalchian S, et al. MR fingerprinting of adult brain tumors: initial experience. AJNR Am J Neuroradiol 2017;38:492-499 DOI |
10 | Uecker M, Lai P, Murphy MJ, et al. ESPIRiT--an eigenvalue approach to autocalibrating parallel MRI: where SENSE meets GRAPPA. Magn Reson Med 2014;71:990-1001 DOI |
11 | Chen Y, Panda A, Pahwa S, et al. Three-dimensional MR fingerprinting for quantitative breast imaging. Radiology 2019;290:33-40 DOI |
12 | Aggarwal HK, Mani MP, Jacob M. MoDL: model-based deep learning architecture for inverse problems. IEEE Trans Med Imaging 2019;38:394-405 DOI |
13 | Yu AC, Badve C, Ponsky LE, et al. Development of a combined MR fingerprinting and diffusion examination for prostate cancer. Radiology 2017;283:729-738 DOI |
14 | Liao C, Bilgic B, Manhard MK, et al. 3D MR fingerprinting with accelerated stack-of-spirals and hybrid sliding-window and GRAPPA reconstruction. Neuroimage 2017;162:13-22 DOI |
15 | Asslander J, Cloos MA, Knoll F, Sodickson DK, Hennig J, Lattanzi R. Low rank alternating direction method of multipliers reconstruction for MR fingerprinting. Magn Reson Med 2018;79:83-96 DOI |
16 | Ma D, Gulani V, Seiberlich N, et al. Magnetic resonance fingerprinting. Nature 2013;495:187-192 DOI |
17 | Cline CC, Chen X, Mailhe B, et al. AIR-MRF: accelerated iterative reconstruction for magnetic resonance fingerprinting. Magn Reson Imaging 2017;41:29-40 DOI |
18 | Schlemper J, Caballero J, Hajnal JV, Price AN, Rueckert D. A deep cascade of convolutional neural networks for dynamic MR image reconstruction. IEEE Trans Med Imaging 2018;37:491-503 DOI |
19 | Chen D, Davies ME, Golbabaee M. Compressive MR fingerprinting reconstruction with neural proximal gradient iterations. In: Martel AL, Abolmaesumi P, Stoyanov D, eds. Lecture notes in computer science (including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics). Cham, Swizerland: Springer Sience and Buiness Media Deutschland GmbH, 2020:13-22 |
20 | Cao P, Cui D, Vardhanabhuti V, Hui ES. Development of fast deep learning quantification for magnetic resonance fingerprinting in vivo. Magn Reson Imaging 2020;70:81-90 DOI |
![]() |