• Title/Summary/Keyword: Magnetic Metal Films

Search Result 106, Processing Time 0.032 seconds

The advancing techniques and sputtering effects of oxide films fabricated by Stationary Plasma Thruster (SPT) with Ar and $O_2$ gases

  • Jung Cho;Yury Ermakov;Yoon, Ki-Hyun;Koh, Seok-Keun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1999.07a
    • /
    • pp.216-216
    • /
    • 1999
  • The usage of a stationary plasma thruster (SPT) ion source, invented previously for space application in Russia, in experiments with surface modifications and film deposition systems is reported here. Plasma in the SPT is formed and accelerated in electric discharge taking place in the crossed axial electric and radial magnetic fields. Brief description of the construction of specific model of SPT used in the experiments is presented. With gas flow rate 39ml/min, ion current distributions at several distances from the source are obtained. These was equal to 1~3 mA/$\textrm{cm}^2$ within an ion beam ejection angle of $\pm$20$^{\circ}$with discharge voltage 160V for Ar as a working gas. Such an extremely high ion current density allows us to obtain the Ti metal films with deposition rate of $\AA$/sec by sputtering of Ti target. It is shown a possibility of using of reactive gases in SPT (O2 and N2) along with high purity inert gases used for cathode to prevent the latter contamination. It is shown the SPT can be operated at the discharge and accelerating boltages up to 600V. The results of presented experiments show high promises of the SPT in sputtering and surface modification systems for deposition of oxide thin films on Si or polymer substrates for semiconductor devices, optical coatings and metal corrosion barrier layers. Also, we have been tried to establish in application of the modeling expertise gained in electric and ionic propulsion to permit numerical simulation of additional processing systems. In this mechanism, it will be compared with conventional DC sputtering for film microstructure, chemical composition and crystallographic considerations.

  • PDF

A comparative study on the flux pinning properties of Zr-doped YBCO film with those of Sn-doped one prepared by metal-organic deposition

  • Choi, S.M.;Shin, G.M.;Joo, Y.S.;Yoo, S.I.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.15 no.4
    • /
    • pp.15-20
    • /
    • 2013
  • We investigated the flux pinning properties of both 10 mol% Zr-and Sn-doped $YBa_2Cu_3O_{7-{\delta}}$ (YBCO) films with the same thickness of ~350 nm for a comparative purpose. The films were prepared on the $SrTiO_3$ (STO) single crystal substrate by the metal-organic deposition (MOD) process. Compared with Sn-doped YBCO film, Zr-doped one exhibited a significant enhancement in the critical current density ($J_c$) and pinning force density ($F_p$). The anisotropic $J_{c,min}/J_{c,max}$ ratio in the field-angle dependence of $J_c$ at 77 K for 1 T was also improved from 0.23 for Sn-doped YBCO to 0.39 for Zr-doped YBCO. Thus, the highest magnetic $J_c$ values of 9.0 and $2.9MA/cm^2$ with the maximum $F_p$ ($F_{p,max}$) values of 19 and $5GN/m^3$ at 65 and 77 K for H // c, respectively, could be achieved from Zr-doped YBCO film. The stronger pinning effect in Zr-doped YBCO film is attributable to smaller $BaZrO_3$ (BZO) nanoparticles (the average size ${\approx}28.4$ nm) than $YBa_2SnO_{5.5}$ (YBSO) nanoparticles (the average size ${\approx}45.0$ nm) incorporated in Sn-doped YBCO film since smaller nanoparticles can generate more defects acting as effective flux pinning sites due to larger incoherent interfacial area for the same doping concentration.

Atomic Resolution Scanning Transmission Electron Microscopy of Two-Dimensional Layered Transition Metal Dichalcogenides

  • Lu, Ning;Wang, Jinguo;Oviedo, uan Pablo;Lian, Guoda;Kim, Moon Jea
    • Applied Microscopy
    • /
    • v.45 no.4
    • /
    • pp.225-229
    • /
    • 2015
  • Transition metal dichalcogenides (TMDs) are a class of two-dimensional (2D) materials that have attracted growing interest because of their promising applications. The properties of TMDs strongly depend on the crystalline structure and the number and stacking sequence of layers in their crystals and thin films. Though electrical, mechanical, and magnetic studies of 2D materials are being conducted, there is an evident lack of direct atom-by-atom visualization, limiting insight on these highly exciting material systems. Herein, we present our recent studies on the characterization of 2D layered materials by means of aberration corrected scanning transmission electron microscopy (STEM), in particular via high angle annular dark field (HAADF) imaging. We have identified the atomic arrangements and defects in 2H stacked TMDs, 1T stacked TMDs, distorted 1T stacked TMDs, and vertically integrated heterojunctions of 2D TMDs crystals.

MBE growth and magnetic properties of epitaxial FeMn2O4 film on MgO(100)

  • Duong, Van Thiet;Nguyen, Thi Minh Hai;Nguyen, Anh Phuong;Dang, Duc Dung;Duong, Anh Tuan;Nguyen, Van Quang;Cho, Sunglae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.318.2-318.2
    • /
    • 2016
  • FeM2X4 spinel structures, where M is a transition metal and X is oxygen or sulfur, are candidate materials for spin filters, one of the key devices in spintronics. Both the Fe and M ions can occupy tetrahedral and octahedral sites; therefore, these types of compounds can display various physical and chemical properties [1]. On the other hand, the electronic and magnetic properties of these spinel structures could be modified via the control of cation distribution [2, 3]. Among the spinel oxides, iron manganese oxide is one of promising materials for applications. FeMn2O4 shows inverse spinel structure above 390 K and ferrimagnetic properties below the temperature [4]. In this work, we report on the structural and magnetic properties of epitaxial FeMn2O4 thin film on MgO(100) substrate. The reflection high energy electron diffraction (RHEED) and X-ray diffraction (XRD) results indicated that films were epitaxially grown on MgO(100) without the impurity phases. The valance states of Fe and Mn in the FeMn2O4 film were carried out using x-ray photoelectron spectrometer (XPS). The magnetic properties were measured by vibrating sample magnetometer (VSM), indicating that the samples are ferromagnetic at room temperature. The structural detail and origin of magnetic ordering in FeMn2O4 will be discussed.

  • PDF

Soft X-ray Synchrotron-Radiation Spectroscopy Study of [Co/Pd] Multilayers as a Function of the Pd Sublayer Thickness (Pd층의 두께 변화에 따른 [Co/Pd] 다층박막의 연엑스선 방사광 분광 연구)

  • Kim, D.H.;Lee, Eunsook;Kim, Hyun Woo;Seong, Seungho;Kang, J.-S.;Yang, Seung-Mo;Park, Hae-Soo;Hong, JinPyo
    • Journal of the Korean Magnetics Society
    • /
    • v.26 no.4
    • /
    • pp.124-128
    • /
    • 2016
  • We have investigated the electronic structures of intermetallic multilayer (ML) films of [$Co(2{\AA})/Pd(x{\AA})$] (x: the thickness of the Pd sublayer; x = $1{\AA}$, $3{\AA}$, $5{\AA}$, $7{\AA}$, $9{\AA}$) by employing soft X-ray absorption spectroscopy (XAS) and soft X-ray magnetic circular dichroism (XMCD). Both Co 2p XAS and XMCD spectra are found to be similar to one another, as well as to those of Co metal, providing evidence for the metallic bonding of Co ions in [Co/Pd] ML films. By analyzing the measured Co 2p XMCD spectra, we have determined the orbital magnetic moments and the spin magnetic moments of Co ions in [$Co(2{\AA})/Pd(x{\AA})$] ML films. Based on this analysis, we have found that the orbital magnetic moments are enhanced greatly when x increases from $1{\AA}$ to $3{\AA}$, and then do not change much for $x{\geq}3{\AA}$. This finding suggests that the interface spin-orbit coupling plays an important role in determining the perpendicular magnetic anisotropy in [Co/Pd] ML films.

Fabrication of Lightweight Microwave Absorbers with Co-coated Hollow Silica Microspheres (저밀도 실리카 중공미세구 표면에 Co 박막의 코팅에 의한 경량 전파흡수체 제조)

  • Kim, Sun-Tae;Kim, Sung-Soo;Ahn, Jun-Mo;Kim, Keun-Hong
    • Journal of the Korean Magnetics Society
    • /
    • v.15 no.2
    • /
    • pp.67-75
    • /
    • 2005
  • For th aim of lightweight microwave absorbers, conductive and magnetic microspheres are fabricated by plating of Co films on hollow ceramic microspheres of low density. Metal plating was carried out in a two-step electroless plating process (pre-treatment of activation and plating). Uniform coating of the film with about $2{\~}3{\cal}um$ thickness was identified by SEM. High-frequency magnetic and microwave absorbing properties were determined in the rubber composites containing the Co-coated microspheres. Due to conductive and ferromagnetic behavior of the Co thin films, high dielectric constant and magnetic loss can be obtained in the microwave frequencies. Due to those electromagnetic properties, high absorption rate (25 dB) and thin matching thickness ($2.0{\~}2.5{\cal}mm$) are predicted in the composite layers containing the metal-coated microspheres of low density (about 0.84 g/cc) for the electromagnetic radiation in microwave frequencies.

Characteristics of Transparent Conductive Tin Oxide Thin Films on PET Substrate Prepared by ECR-MOCVD (PET 기판상에 ECR 화학증착법에 의해 제조된 SnO2 투명도전막의 특성)

  • Kim, Yun Seok;Jeon, Bup Ju;Ju, Jeh Beck;Sohn, Tae Won;Lee, Joong Kee
    • Korean Chemical Engineering Research
    • /
    • v.43 no.1
    • /
    • pp.85-91
    • /
    • 2005
  • $SnO_2$ films were prepared at room temperature under a $(CH_3)_4Sn-H_2-O_2$ atmosphere in order to obtain transparent conductive polymer by using ECR-MOCVD (Electron Cyclotron resonance -Metal Organic Chemical Vapor Deposition) system. The electrical properties of the films were investigated as function of process parameters such as deposition time, microwave power, magnetic current power, magnet/showering/substrate distance and working pressure. An increase in microwave power and magnetic current power brought on $SnO_2$ film formation with low electric resistivity. On the other hand, the effects of process parameters described above on optical properties were insignificant in the range of our experimental scope. The transmittance and reflectance of the films prepared by the ECR-MOCVD exhibited their average values of 93-98% at wave length range of 380-780 nm and 0.1-0.5%, respectively. The grain size of the $SnO_2$ films that are also insensitive with the process parameters were in the range of 20-50 nm. On the basis of experimental data obtained in the present study, electrical resistivity of $7.5{\times}10^{-3}ohm{\cdot}cm$, transmittance of 93%, and reflectance of 0.2% can be taken as optimum values.

Reactive Ion Etching of NiFe Film with Organic Resist Mask and Metal Mask by Inductively Coupled Plasma

  • Kanazawa, Tomomi;Motoyama, Shin-Ichi;Wakayama, Takayuki;Akinaga, Hiroyuki
    • Journal of Magnetics
    • /
    • v.12 no.2
    • /
    • pp.81-83
    • /
    • 2007
  • Etching of NiFe films covered with an organic photo-resist or Ti was successfully performed by an inductively coupled plasma-reactive ion etching (ICP-RIE) system using $CHF_3/O_2/NH_3$ discharges exchanging $CHF_3$ for $CH_4$ gas gradually. Experimental results showed that the organic photo-resist mask can be applied to the NiFe etching. In the case of the Ti metal mask, it was found that the etching-selectivity Ti against NiFe was significantly varied from 7.3 to ${\sim}0$ by changing $CHF_3/CH_4/O_2/NH_3$ to $CH_4/O_2/NH_3$ discharges used in the ICP-RIE system. These results show that the present RIE of NiFe was dominated by a chemical reaction rather than a physical sputtering.

Structure and Physical Properties of Fe/Si Multiayered Films with Very Thin Sublayers

  • Baek, J.Y;Y.V.Kudryavtsev;J.Y.Rhee;Kim, K.W.;Y.P.Le
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2000.02a
    • /
    • pp.173-173
    • /
    • 2000
  • Multilayered films (MLF) consisting of transition metals and semiconductors have drawn a great deal of interest because of their unique properties and potential technological applications. Fe/Si MLF are a particular topic of research due to their interesting antiferromagnetic coupling behavior. although a number of experimental works have been done to understand the mechanism of the interlayer coupling in this system, the results are controversial and it is not yet well understood how the formation of an iron silicide in the spacer layers affects the coupling. The interpretation of the coupling data had been hampered by the lack of knowledge about the intermixed iron silicide layer which has been variously hypothesized to be a metallic compound in the B2 structure or a semiconductor in the more complex B20 structure. It is well known that both magneto-optical (MO0 and optical properties of a metal depend strongly on their electronic structure that is also correlated with the atomic and chemical ordering. In order to understand the structure and physical properties of the interfacial regions, Fe/Si multilayers with very thin sublayers were investigated by the MO and optical spectroscopies. The Fe/si MLF were prepared by rf-sputtering onto glass substrates at room temperature with a totall thickness of about 100nm. The thicknesses of Fe and Si sublayers were varied from 0.3 to 0.8 nm. In order to understand the fully intermixed state, the MLF were also annealed at various temperatures. The structure and magnetic properties of Fe/Si MLF were investigated by x-ray diffraction and vibrating sample magnertometer, respectively. The MO and optical properties were measured at toom temperature in the 1.0-4.7 eV energy range. The results were analyzed in connection with the MO and optical properties of bulk and thin-film silicides with various structures and stoichiometries.

  • PDF

A First-principles Study on the Oscillation of Magnetic Moments in the Nonmagnetic 4d and 5d Transition Metal (Rh, Pd, and Pt) Thin Films with an Inserted Ni Monolayer (Ni 단층이 삽입된 비자성 4d 및 5d 전이금속 Rh, Pd 과 Pt 박막에서 자기모멘트 진동에 관한 제1원리 연구)

  • 김인기;김선희;위선미;이재일;이상조
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2002.12a
    • /
    • pp.192-193
    • /
    • 2002
  • 비자성 금속에 자성 불순물이 첨가되었을 경우 비자성 전이금속의 전도전자들이 불순물에서 멀어지면서 감쇠 진동하는 형태로 스핀분극 된다는 사실은 매우 잘 알려져 있으며, 그 진동주기는 Fermi 파동벡터 크기(k$_{F}$ )의 역수의 절반이다[1]. 비자성 금속 내의 자성 불순물사이의 상호작용은 전도성 전자의 감쇠 진동하는 스핀 분극에 바탕을 둔 RKKY 교환 상호작용[2]으로 잘 기술된다. (중략)

  • PDF