• Title/Summary/Keyword: Magnetic Levitation System

Search Result 281, Processing Time 0.026 seconds

Adaptive control with neural network for a magnetic levitation system

  • Hao, Shuang-Hui;Yang, Zi-Jiang;Tsuji, Teruo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.195-200
    • /
    • 1994
  • This paper presents a nonlinear adaptive control approach to a 4-point attraction magnetic levitation system using the local coordinates transformation and neural network. Based on local coordinates transformations, the magnetic levitation system can be represented in a state magnetic levitation system can be represented in a state space from of a 4-input 4-output. Neural networks which are defined in the new coordinates are used to learn the nonlinear functions of the system which are defined in the new coordinats also. The parameters of the neural networks are updated in an on-line manner according to an augmented tracking error. The simulation results are reported in this paper.

  • PDF

Magnetic levitation control by attractive force compensation

  • Jeong, Nam-Soo;Kim, Sang-Bong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10b
    • /
    • pp.355-359
    • /
    • 1992
  • This paper presents a procedure to design a real time control system for a magnetic levitation system based on the state space approach by adopting a control method compensating attractive force according to load variation of maglev vehicle. Also the paper has realized a robust control algorithm for the change of self-inductance parameters and the disturbance such as the change of mass of Maglev vehicles. The theoretical results are applied to the gap control problems of an attractive-type-magnetic levitation system and the effectiveness is proved by the implementation of digital control using 16 bits microcomputer.

  • PDF

$H_ {\infty}$ PID Controller Design for an Attraction Type Magnetic Levitation System (흡인식 자기부상시스템의 $H_ {\infty}$ PID 제어기 설계)

  • Kim, Seog-Joo;Kim, Chun-Kyung;Kwon, Soon-Man
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.9
    • /
    • pp.1624-1627
    • /
    • 2008
  • This paper deals with a linear matrix inequality (LMI) approach to the design of a PID controller for an attraction type magnetic levitation system. First, we convert the $H_ {\infty}$ PID controller problem into a static output feedback problem. We then solve the static output problem by using the recently developed penalty function method. Numerical experiments show the effectiveness of the proposed algorithm.

Design and Control of Levitation and Guidance Systems for a Semi-High-Speed Maglev Train

  • Kim, Min;Jeong, Jae-Hoon;Lim, Jaewon;Kim, Chang-Hyun;Won, Mooncheol
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.117-125
    • /
    • 2017
  • Research on Maglev (Magnetic Levitation) train is currently being conducted in Korea, concerning Urban Transit (110 km/h of maximum speed), semi-high-speed (200 km/h of maximum speed), and high-speed (550 km/h of maximum speed) trains. This paper presents a research study on the levitation and guidance systems for the Korean semi-high-speed maglev train. A levitation electromagnet was designed, and the need for a separate guidance system was analyzed. A guidance electromagnet to control the lateral displacement of the train and ensure its stable operation was then also designed, and its characteristics were analyzed. The dynamic performance of the designed levitation and guidance electromagnets was modeled and analyzed, using a linearized modeling of the system equations of motion. Lastly, a test setup was prepared, including manufactured prototypes of the designed system, and the validity of the design was verified and examined with performance evaluation tests.

Characteristic Analysis of HTS EDS System with Various Ground Conductors

  • Bae, Duck-Kweon;Ko, Tae-Kuk
    • Progress in Superconductivity and Cryogenics
    • /
    • v.12 no.2
    • /
    • pp.21-24
    • /
    • 2010
  • This paper deals with numerical analysis on a high-$T_c$ superconducting (HTS) electrodynamic suspension (EDS) simulator according to the variation of the ground conductor conditions. Because the levitation force of EDS system is formed by the magnetic reaction between moving magnets and fixed ground conductors, the distribution of the magnetic flux on a ground conductor plays an important role in the determining of the levitation force level. The possible way to analyze HTS EDS system was implemented with 3D finite element method (FEM) tool. A plate type ground conductor generated stronger levitation force than ring type ground conductor. Although the outer diameter of Ring3 (335 mm) was larger than that of Ring2 (235 mm), the levitation force by Ring2 was stronger than that by Ring3. Considering the results of this paper, it is recommended that the magnetic flux distribution according to the levitation height and magnet current should be taken into account in the design of the ground conductors.

Design of the Power Conversion System for the Magnetic Levitation System (자기부상열차용 전원공급장치 설계)

  • Song, Byeong-Mun;Kye, Moon-Ho;Oh, Sung-Chul;Joe, Ki-Youn;Kim, Yo-Hee
    • Proceedings of the KIEE Conference
    • /
    • 1990.11a
    • /
    • pp.384-387
    • /
    • 1990
  • This paper describes the design of the power conversion system for the 3-ton prototype magnetic levitation system. Electric power needed for the propulsion and levitation system of the vehicle is supplied by the wayside rectifier through the power rail and is picked up by the on board power collector, and is supplied to the propulsion VVVF inverter and levitation chopper. In this paper, design characteristic of the VVVF inverter, chopper and power source unit which provides control power to the levitation controller and levitation power to the chopper is described.

  • PDF

Dynamic Analysis of a Maglev Conveyor Using an EM-PM Hybrid Magnet

  • Kim, Ki-Jung;Han, Hyung-Suk;Kim, Chang-Hyun;Yang, Seok-Jo
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.6
    • /
    • pp.1571-1578
    • /
    • 2013
  • With the emergence of high-integration array and large area panel process, the need to minimize the generation of particles in the field of semiconductor, LCD and OLED has grown. As an alternative to the conventional roller system, a contactless magnetic conveyor has been proposed to reduce the generation of particles. An EM-PM hybrid which is one of magnetic levitation types is already proposed for the conveyor system. One of problems pointed out with this approach is the vibration caused by the dynamic interaction between conveyor and rail. To reduce the vibration, the introduction of a secondary suspension system which aims to decouple the levitation electromagnet from the main body is proposed. The objective of this study is to develop a dynamic model for the magnetically levitated conveyor, and to investigate the effect of the introduced suspension system. An integrated model of levitation system and rail based on 3D multibody dynamic model is proposed. With the proposed model, the dynamic characteristics of maglev conveyor system are analyzed, and the effect of the secondary suspension and the stiffness and damping are investigated.

Design of Levitation and Propulsion Controller for Magnetic Levitated Logistic Transportation System (자기부상 물류이송시스템의 부상 및 추진제어기 설계)

  • Choi, Dae-Gyu;Kim, Yong-Tae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.27 no.2
    • /
    • pp.106-112
    • /
    • 2017
  • In the paper, we propose a levitation and a propulsion controller for the magnetic levitation logistic transportation system. The levitation controller is designed considering the mutual influence of the electromagnets to minimize roll and pitch movements. In order to solve the structural disadvantages of the magnetic levitation transportation system, we improve the problem of the existing controller by applying the exponential filter to the reference input. DSP-based control hardware is developed and the levitation control method is verified by levitation experiments to the air gap goal. The propulsion controller uses the space vector voltage modulation method. The propulsion controller is designed to follow the position and velocity profile by detecting the absolute position from the bar code information attached to the rail. The position control result shows satisfactory performance through the propulsion control reciprocating motion experiment.

A Study on the RC and PSC structure System of the Transrapid in Germany (독일자기부상열차 Transrapid의 콘크리트 교각선로구조물에 관한 연구)

  • Kang, Bo-Soon;Kim, Soo-Sam
    • Journal of the Korean Society for Railway
    • /
    • v.1 no.1 s.1
    • /
    • pp.20-29
    • /
    • 1998
  • State of the art and current issues related with the RC and PSC structure system for the German magnetic levitation train "Transrapid" were investigated. The German magnetic levitation train adopted a new kind of a structure to enable high-speed transportation, which allows the use of the space over a ground. The loading from Transrapid is light-weight compared with a regular train due to load distribution to a supporting structure. Therefore, Transrapid is considered an economical and efficient transportation system, and is also an environmentally-sustainable structure. In this paper, the structural design and construction technology specific to a magnetic levitation train were discussed, and structural considerations related with an actual operation of the train were pointed out. In addition, the future research area of a magnetic levitation train was proposed.

  • PDF

Characteristic Analysis of LIM for Magnetic Levitation Vehicle by F.E.M. (FEM을 이용한 자기부상 열차용 선형 유도전동기의 특성 해석)

  • Kim Jeong-Cheol;Lee Sang-Woo;Yoon Jong-Hack;choi Jong-Mook
    • Proceedings of the KSR Conference
    • /
    • 2003.05a
    • /
    • pp.433-438
    • /
    • 2003
  • The recent operating trains including the high speed train are mostly moving system on the rail and system use the mechanical propulsion force to drive the gear and wheel by the traction motor. Advanced countries are interested in Magnetic Levitation Vehicle and they have been studying about it continuously. Thus this paper is analyzed the feature of analysis the feature for Linear Induction Motor as the propulsion equipment of Magnetic Levitation Vehicle. And the Magnetic Levitation Vehicle is being developed for the transportation system of next generation using the Finite Element Method

  • PDF