• Title/Summary/Keyword: Magnesium dissolution

Search Result 52, Processing Time 0.018 seconds

Precipitation of Magnesium Sulfate from Concentrated Magnesium Solution for Recovery of Magnesium in Seawater (해수 중 마그네슘 회수를 위한 마그네슘 농축액으로부터 황산마그네슘의 석출)

  • Cho, Taeyeon;Kim, Myoung-Jin
    • Resources Recycling
    • /
    • v.25 no.4
    • /
    • pp.32-41
    • /
    • 2016
  • The precipitation test, which is the last step of magnesium recovery process consisting of three processes (pre-precipitation, selective dissolution of magnesium, precipitation) is performed to obtain magnesium sulfate powder from seawater. In the study, we succeed in precipitating the magnesium sulfate by adding acetone into the solution of magnesium over 4 times concentrated from seawater. The yield efficiency of magnesium sulfate increases with increasing pH and the ratio of added acetone. More than 99% of magnesium is obtained as magnesium sulfate hydrate ($MgSO_4{\cdot}6H_2O$) under the following conditions; pH 1.0 ~ 1.5, and the ratio of solution and acetone 1 : 1.5 (v:v). The acetone used in the precipitation process is recovered by the fractional distillation.

Dissolution Characteristics of Biphenyl Dimethyl Dicarboxylate from Solid Dispersions with Copolyvidone

  • Moon, Jee-Hyun;Chun, In-Koo
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1997.04a
    • /
    • pp.118-118
    • /
    • 1997
  • Solid dispersions were used to increase the dissolution rate of biphenyl dimethyl dicarboxylate (DDB) in water, with the ultimate goal of optimizing its bioavailability when incoporated into pharmaceuticals. Carriers used were Kollidon 30, Kollidon VA 64, 2-hydroxypropyl-${\beta}$-cyclodextrin (HPCD), sodium salicylate or sodium benzoate. DDB solid dispersions were prepared at drug to carrier proportions ranging from 1 : 5 to 1 : 20 (w/w) by solvent evaporation method. DDB tablets (7.5 mg) were prepared by compressing the powder mixture composed of solid dispersions, lactose, corn starch, crospovidone and magnesium stearate using a single-punch press. DDB capsules (7.5 mg) were prepared by filing the mixture into empty hard gelatin capsules (size #1). Dissolution studies of DDB from powdered solid dispersions, tablets and capsules were performed in 900 $m\ell$ of water at 100 rpm and 37$^{\circ}C$ by the paddle method. The dissolved amount was assayed by HPLC and expressed as the mean(%)of three determinations.

  • PDF

Preparation of Substained-Release Microspheres of Phenylpropanolamine HCI and Their Release Characteristics

  • Kim, Chong-Kook;Lee, Kyung-Mi;Hwang, Sung-Joo;Yoon, Yong-Sang
    • Archives of Pharmacal Research
    • /
    • v.13 no.4
    • /
    • pp.293-297
    • /
    • 1990
  • Sustained release microspheres containing phenylpropanolamine HCI (PPA) were prepared with acrylic polymer (Eudragit RL/RS) sand hydroxypropylmethylcellulose phthalate (HPMCP) using a emulsion-solvent evaporation method. Magnesium strate was used a smoothing agent for preparation of microspheres. The microspheres obtained were very spherical and free-flowing particles. Scanning electron microscopy showed that microspheres have a smooth surface and a sponage-like internal structure. The dissolution rate of PPA from the microspheres was dependent on the pH of dissolution media. PPA showed faster relase in hP 1. 2 solution than in pH 7.4 solution due to the solubility of PPA. Therefore we prepared new microspheres containing 5% (w/v) HPMCP in order to control the release of PPA. The release rate of PPA from these new microspheres was similar in pH 1.2 and pH 7.4 solution.

  • PDF

Study of Plating Layer Formation of Lightweight Magnesium Alloy (AZ31B) (경량 마그네슘 합금(AZ31B)의 도금층 형성 연구)

  • Choi, Kyoung-Su;Choi, Soon-Don;Min, Bong-Ki;Lee, Seung-Hyeon;Sin, Hyeon-Jun
    • Journal of the Korean institute of surface engineering
    • /
    • v.44 no.6
    • /
    • pp.239-245
    • /
    • 2011
  • Magnesium alloys is the lightest by structural metals, but it is not good corrosion resistant because of pit, void. Particularly, AZ31B magnesium alloy sheets that have slag, scratch by rolling process indicate some defects. The objective of this research is to perform uniform plating on AZ31B by studying etching and zincate process. Especially, zincate treatment by zinc salt and pyrophosphate is the most important in the decoration plating. Dissolution of magnesium is reduced by the formation of uniform zinc conversion layer during strick and post process, which decreases defects for plating process.

Galvanic Corrosion of Zn/Steel Couple in Aqueous MgCl2

  • Tada, E.;Katakami, S.;Nishikata, A.
    • Corrosion Science and Technology
    • /
    • v.16 no.4
    • /
    • pp.183-186
    • /
    • 2017
  • Galvanic corrosion tests of Zn/steel couples were conducted in 1 M NaCl and $1M\;MgCl_2$ solutions to investigate the impact of magnesium ion on corrosion behavior of the couples. Two types of Zn/steel couples were used for measurements of open circuit potential (OCP) and galvanic current. From the results of OCP transient of Zn/steel couples, the corrosion potential in $1M\;MgCl_2$ was a more positive value than that in 1 M NaCl during the sacrificial dissolution of Zn. However, earlier increase of OCP of the couples in $1M\;MgCl_2$ solution indicates that the sacrificial dissolution rate of Zn in $1M\;MgCl_2$ was enhanced more than that in 1 M NaCl, agreeing with the results on transients of galvanic current. This result is due to that cathodic reaction on the steel surface of the Zn/steel couple was enhanced in $1M\;MgCl_2$ by the occurrence of hydrogen evolution reaction.

The Dissolution of Magnesium and Iron from Ferronickel Slag Depending on Aging Condition (Aging 조건에 따른 페로니켈 슬래그의 마그네슘 및 철 용출 특성)

  • Kim, Eun-Young;Choi, Sang-Won;Kim, Viktor;Li, Yujia;Park, Ji-Hyun
    • Applied Chemistry for Engineering
    • /
    • v.24 no.4
    • /
    • pp.350-356
    • /
    • 2013
  • Dissolution of ferronickel slag depending on aging condition was studied. Ferronickel slag typically contains 54.05% $SiO_2$, 34.33% MgO, and 5.51% $Fe_2O_3$. The main structure composite was similar to Enstatite [(Mg, $Fe^{2+}$ )$SiO_3$]. Ferronickel slag aging was made in 3 months under various experimental conditions, in water, bubbling water and wetting air. The most effective aging condition was the wetting air treatment. In this condition, the dissolving concentration of Mg and Fe was 80.0% and 75.1% respectively. The XRD and SEM data revealed that the wetting air condition also showed the biggest structural damage.

Electroplating on Magnesium Alloy in KF-Added Pyrophosphate Copper Bath (불화칼륨이 첨가된 피로인산구리 도금욕에서 마그네슘합금의 전기도금)

  • Lee, Jung Hoon;Kim, Yong Hwan;Jung, Uoo Chang;Chung, Won Sub
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.3
    • /
    • pp.218-224
    • /
    • 2010
  • Direct copper electroplating on Mg alloy AZ31B was carried out in a traditional pyrophosphate copper bath containing potassium fluoride. Electrochemical impedance spectroscopy and polarization methods were used to study the effects of added potassium fluoride on electrochemical behavior. The chemical state of magnesium alloy in the electroplating bath was analyzed by X-ray photoelectron spectroscopy. Adhesion of the copper electroplated layer was also tested. Due to the added potassium fluoride, a magnesium fluoride film was formed in the pyrophosphate copper bath. This fluoride film inhibits dissolution of Mg alloy and enables to electroplate copper directly on it. A dense copper layer was formed on the Mg alloy. Moreover, this copper layer has a good adhesion with Mg alloy substrate.

Enhanced Dissolution and Permeation of Biphenyl Dimethyl Dicarboxylate Using Solid Dispersions (고체분산체로부터 비페닐디메칠디카르복실레이트의 용출 및 투과 증전)

  • Moon, Jee-Hyun;Chun, In-Koo
    • Journal of Pharmaceutical Investigation
    • /
    • v.29 no.3
    • /
    • pp.227-234
    • /
    • 1999
  • Solid dispersions were prepared to increase the dissolution rate of biphenyl dimethyl dicarboxylate (DDB) using water-soluble carriers such as povidone, copolyvidone, $2-hydroxypropyl-{\beta}-cyclodextrin (HPCD)$, sodium salicylate or sodium benzoate by solvent evaporation method. Solid dispersions were characterized by infrared spectrometry, differential scanning calorimetry (DSC) and powder X-ray diffractometry, dissolution and permeation studies. DDB tablets (7.5 mg) were prepared by compressing the powder mixtures composed of solid dispersions, lactose, com starch, crospovidone and magnesium stearate using a single-punch press. DDB capsules (7.5 mg) were also prepared by filling the mixtures in empty hard gelatin capsules (size No.1). From the DSC and powder x-ray diffractometric studies, it was found that DDB was amorphous in the HPCD or copolyvidone solid dispersions. Dissolution rates after 10 min of DDB alone and solid dispersions (1 : 10) in sodium benzoate, sodium salicylate and copolyvidone were 11.8, 23.5, 22.8 and 82.5%, respectively. Dissolution rates of DDB after 30 min from 1 : 10 and 1 : 20 copolyvidone solid dispersions were 80.5 and 95.0%, respectively. For the DDB tablets prepared using solid dispersions (1 : 20), the initial dissolution rate was dependent on carrier material, and was ranked in order, $Kollidon\;30\;{\ll}$ copolyvidone < HPCD. For the HPCD solid dispersion tablets, dissolution rate reached 97.4% after 15 min, but thereafter slowly decreased to 80.7% after 2 hr due to the precipitation of DDB. However, in the case of copolyvidone solid dispersion tablets, dissolution increased linearly and reached 93.4% after 2 hr. Reducing the volume of test medium from 900 to 300 ml markedly decreased the dissolution rate of the tablets containing 1 : 20 HPCD solid dispersions and 1 : 10 copolyvidone solid dispersion. For 1 : 20 copolyvidone solid dispersion tablets, there was no significant change in dissolution rate up to 1 hr with different volumes of test medium. Preparation of the copolyvidone solid dispersion (1 : 20) in capsules markedly delayed the dissolution (31.2 % after 2hr) due to the limited diffusion within capsules. The permeation rate $(13.4\;g/cm^2\;after\;8\;hr)$ of DDB through rabbit duodenal mucosa from copolyvidone solid dispersion (1 : 10) was markedly enhanced, when compared with drug alone or physical mixtures. From overall findings, DDB formulations containing copolyvidone solid dispersions (1 : 20) could be used to remarkably improve the dissolution rate in dosage form of powders and tablets.

  • PDF

Improvement of Dissolution rate of Felodipine Using Solid Dispersion and its Sustained Release Oral Dosage Form (고체분산체에 의한 펠로디핀의 용출율 개선과 서방성 경구제제)

  • Gil, Young-Sig;Hong, Seok-Cheon;Yu, Chang-Hun;Shin, Hyun-Jong;Kim, Jong-Sung
    • Journal of Pharmaceutical Investigation
    • /
    • v.32 no.3
    • /
    • pp.185-190
    • /
    • 2002
  • To improve the solubility of poorly water-soluble drug and to develop a sustained release tablets, the need for the technique, the formation of solid dispersion with polymeric materials that can potentially enhance the dissolution rate and extent of drug absorption was considered in this study. The 1:1, 1:4, and 1:5 solid dispersions were prepared by spray drying method using PVP K30, ethanol and methylene chloride. The dissolution test was carried out at in phosphate buffer solution at $37^{\circ}C$ in 100 rpm. Solid dispersed drugs were examined using differential scanning calorimetry and scanning electron microscopy, wherein it was found that felodipine is amorphous in the PVP K30 solid dispersion. Felodifine SR tablets were prepared by direct compressing the powder mixture composed of solid dispersed felodipine, lactose, Eudragit and magnesium stearate using a single punch press. In order to develop a sustained-release preparation containing solid dispersed felodipine, a comparative dissolution study was done using commercially existing product as control. The dissolution rate of intact felodipine, solid dispersed felodipine and its physical mixture, respectively, were compared by the dissolution rates for 30 minutes. The dissolution rates of felodipine for 30 minutes from 1:1, 1:4, 1:5 PVP K30 solid dispersion were 70%, 78% and 90%. However, dissolution rate offelodipine from the physical mixture was 5% of drug for 30 minutes. Our developed product Felodipine SR Tablet showed dissolution of 17%, 50% and 89% for 1, 4, and 7 hours. This designed oral delivery system is easy to manufacture, and drug releases behavior is highly reproducible and offers advantages over the existing commercial product. The dissolution rate of felodipine was significantly enhanced, following the formation of solid dispersion. The solid dispersion technique with water-soluble polymer could be used to develop a solid dispersed felodipine SR tablet.

Copper Electroplating on Mg Alloy in Pyrophosphate Solution

  • Van Phuong, Nguyen;Moon, Sungmo
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.124.1-124.1
    • /
    • 2016
  • In this work, uniform thickness and good adhesion of electrodeposited copper layer were achieved on AZ91 Mg alloy in alkaline noncyanide copper solution containing pyrophosphate ion by employing appropriate zincate pretreatment. Without zincate pretreatment, the electrodeposited copper layer on AZ91 Mg alloy was porous and showed poor adhesion which was explained by small number of nucleation sites of copper due to rapid dissolution of the magnesium substrate in the pyrophosphate solution. The zincate pretreatment was found as one of the most important steps that can form a conducting layer to cover AZ91 surface which decreased the dissolution rate of AZ91 Mg alloy about 40 times in the copper pyrophosphate solution. Electrodeposited copper layer on AZ91 Mg alloy after an appropriate zincate pretreatment showed good adhesion and uniform thickness with bright surface appearance, independent of the deposition time but the surface roughness of the electrodeposited copper layer increased with increasing Cu deposition time.

  • PDF