• Title/Summary/Keyword: Macrolide

Search Result 174, Processing Time 0.028 seconds

New Antibiotics Produced by Streptomyces melanosporofaciens II. Antimicrobial Activities and Isolation, Purification, and Structure Determination of the Active Compound (Streptomyces melanosporofaciens가 생산하는 새로운 항생물질 II. 물질의 항균활성과 황성물질의 분리.정제 및 구조결종)

  • 김시관;김상석;김근수;정영륜;김창한
    • Microbiology and Biotechnology Letters
    • /
    • v.19 no.3
    • /
    • pp.235-241
    • /
    • 1991
  • - A phthalic acid derivative and basic macrolide antibiotics, with antimicrobial activity against Gram positive bacteria and phytopathogenic fungi, respectively, were found to be produced by a strain 88-GT-161 identified as being a variety of Streptomyces melanosporofaciens. This paper describes an isolation procedure of the active compounds produced by this strain, their in vitro and in vivo (pot test) antimicrobial activites, and structure determination of one of the compounds, bis (2-ethylhexyl) phthalate, a phthalic acid derivative antibiotic. This compounds, upon cornparision with authentic bis (2-ethylhexyl) phthalate, dioctyl phthalate, revealed a difference in antimicrobial activity even though physico-chemical properties of these two compounds seemed indentical. This is the first report that dioctyl phthalate is biosynthetically produced by a Streptomyces sp. and shows antimicrobial activity.

  • PDF

Incidence of Erythromycin Resistance Genes, erm(B) and mef(A), in Streptococci Isolated from Dental Plaques of Koreans

  • Kim, Yeon-Hee;Lee, Si-Young
    • International Journal of Oral Biology
    • /
    • v.38 no.2
    • /
    • pp.61-65
    • /
    • 2013
  • Erythromycin is a macrolide antibiotic and inhibits bacterial protein synthesis by stimulating the dissociation of the peptidyl-tRNA molecule from the ribosomes during elongation. The use of macrolides has increased dramatically over the last few years and has led to an increase in bacterial resistance to these antibiotics. Bacterial resistance to erythromycin is generally conferred by the ribosome methylation and/or transport (efflux) protein genes. Among the identified erythromycin-resistant genes, erm(B) (erythromycin methylation) and mef(A) (macrolide efflux) are generally detectable in erythromycin-resistant streptococcal species. The distribution of these genes in oral streptococcal isolates has been reported in studies from other countries but has not been previously examined in a Korean study. We here examined by PCR the presence of erm(B) and mef(A) in oral streptococci isolated from Korean dental plaques. Among the 57 erythromycin-resistant strains tested, 64.9% harbored erm(B) whereas 40.4% were positive for mef(A). Eleven isolates had both the erm(B) and mef(A) genes. Twenty six isolates had only erm(B) and 12 isolates had only mef(A). Eight of the 57 strains examined were negative for both genes.

Fungichromin Production by Streptomyces padanus PMS-702 for Controlling Cucumber Downy Mildew

  • Fan, Ya-Ting;Chung, Kuang-Ren;Huang, Jenn-Wen
    • The Plant Pathology Journal
    • /
    • v.35 no.4
    • /
    • pp.341-350
    • /
    • 2019
  • Streptomyces padanus PMS-702 strain produces a polyene macrolide antibiotic fungichromin and displays antagonistic activities against many phytopathogenic fungi. In the present study, experimental formulations were assessed to improve the production of fungichromin, the efficacy of PMS-702 on the suppression of sporangial germination, and the reduction of cucumber downy mildew caused by Pseudoperonospora cubensis. PMS-702 strain cultured in a soybean meal-glucose (SMG) medium led to low levels of fungichromin accumulation and sporangial germination suppression. Increasing medium compositions and adding plant oils (noticeably coconut oil) in SMG significantly increased fungichromin production from 68 to $1,999.6{\mu}g/ml$. Microscopic examination reveals that the resultant suspensions significantly reduced sporangial germination and caused cytoplasmic aggregation. Greenhouse trials reveal that the application of PMS-702 cultural suspensions reduced downy mildew severity considerably. The addition of Tween 80 into the synthetic medium while culturing PMS-702 further increased the suppressive efficacy of downy mildew severity, particularly when applied at 24 h before inoculation or co-applied with inoculum. Fungichromin at $50{\mu}g/ml$ induced phytotoxicity showing minor necrosis surrounded with light yellowish halos on cucumber leaves. The concentration that leads to 90% inhibition (IC90) of sporangial germination was estimated to be around $10{\mu}g/ml$. The results provide a strong possibility of using the S. padanus PMS-702 strain as a biocontrol agent to control other plant pathogens.

Benefits and risks of therapeutic alternatives for macrolide resistant Mycoplasma pneumoniae pneumonia in children

  • Yang, Hyeon-Jong
    • Clinical and Experimental Pediatrics
    • /
    • v.62 no.6
    • /
    • pp.199-205
    • /
    • 2019
  • Although Mycoplasma pneumoniae pneumonia (MPP) has been generally susceptible to macrolides, the emergence of macrolide-resistant MPP (MRMP) has made its treatment challenging. MRMP rapidly spread after the 2000s, especially in East Asia. MRMP is more common in children and adolescents than in adults, which is likely related to the frequent use of macrolides for treating M. pneumoniae infections in children. MRMP is unlikely to be related to clinical, laboratory, or radiological severity, although it likely prolongs the persistence of symptoms and the length of hospital stay. Thereby, it causes an increased burden of the disease and poor quality of life for the patient as well as a societal socioeconomic burden. To date, the only alternative treatments for MRMP are secondary antimicrobials such as tetracyclines (TCs) or fluoroquinolones (FQs) or systemic corticosteroids; however, the former are contraindicated in children because of concerns about potential adverse events (i.e., tooth discoloration or tendinopathy). A few guidelines recommended TCs or FQs as the second-line drug of choice for treating MRMP. However, there have been no evidence-based guidelines. Furthermore, safety issues have not yet been resolved. Therefore, this article aimed to review the benefits and risks of therapeutic alternatives for treating MRMP in children and review the recommendations of international or regional guidelines and specific considerations for their practical application.

Mutational Analysis Elucidates the Role of Conserved 237 Arginine in 23S rRNA Methylation, Which is in the Concave Cleft Region of ErmSF (ErmSF에서 두 도메인 사이에 존재하는 잘 보존된 237번 아르지닌 잔기의 위치 지정 치환 변이의 효소 활성 검색을 통한 역할 규명)

  • Jin, Hyung Jong
    • Korean Journal of Microbiology
    • /
    • v.49 no.2
    • /
    • pp.105-111
    • /
    • 2013
  • The Erm family of adenine-$N^6$ methyltransferases (MTases) is responsible for the development of resistance to macrolide-lincosamide-streptogramin B antibiotics through the methylation of 23S ribosomal RNA. Recently, it has been proposed that well conserved amino acids in ErnC' located in concave cleft between N-terminal 'catalytic' domain and C-terminal 'RNA-binding' domain interacts with substrate RNA. We carried out the site-directed mutagenesis and studied the function of the ErmSF R237 mutant in vitro and in vivo. R237 amino acid residue is located in the concave cleft between two domains. Furthermore this residue is very highly conserved in almost all the Erm family. Purified mutant protein exhibited only 51% enzyme activity compared to wild-type. Escherichia coli with R237A mutant protein compared to the wild-type protein expressing E. coli did not show any difference in its MIC (minimal inhibitory concentration) suggesting that even with lowered enzyme activity, mutant protein was able to efficiently methylate 23S rRNA to confer the resistance on E. coli expressing this protein. But this observation strongly suggests that R237 of ErmSF probably interacts with substrate RNA affecting enzyme activity significantly.

Site-directed Mutagenesis Analysis Elucidates the Role of 223/227 Arginine in 23S rRNA Methylation, Which Is in 'Target Adenine Binding Loop' Region of ErmSF (위치 지정 치환 변이를 이용한 ErmSF의 '타깃 Adenine Binding Loop'을 형성하는 부위에 존재하는 223/227 Arginine 잔기의 23S rRNA Methylation 활성에서의 역할 규명)

  • Jin, Hyung-Jong
    • Korean Journal of Microbiology
    • /
    • v.48 no.2
    • /
    • pp.79-86
    • /
    • 2012
  • ErmSF is one of the Erm family proteins which catalyze S-adenosyl-$_L$-methionine dependent modification of a specific adenine residue (A2058, E. coli numbering) in bacterial 23S rRNA, thereby conferring resistance to clinically important macrolide, lincosamide and streptogramin B ($MLS_B$) antibiotics. $^{222}FXPXPXVXS^{230}$ (ErmSF numbering) sequence appears to be a consensus sequence among the Erm family. This sequence was supposed to be involved in direct interaction with the target adenine from the structural studies of Erm protein ErmC'. But in DNA methyltarnsferase M. Taq I, this interaction have been identified biochemically and from the complex structure with substrate. Arginine 223 and 227 in this sequence are not conserved among Erm proteins, but because of the basic nature of residues, it was expected to interact with RNA substrates. Two amino acid residues were replaced with Ala by site-directed mutagenesis. Two mutant proteins still maintained its activity in vivo and resistant to the antibiotic erythromycin. Compared to the wild-type ErmSF, R223A and R227A proteins retained about 50% and 88% of activity in vitro, respectively. Even though those arginine residues are not essential in the catalytic step, with their positive charge they may play an important role for RNA binding.

Prognostic factors for maxillary sinus mucosal thickening following Le Fort I osteotomy: a retrospective analysis

  • Iwamoto, Masashi;Watanabe, Miki;Yamamoto, Masae;Narita, Masato;Kamio, Takashi;Takaki, Takashi;Shibahara, Takahiko;Katakura, Akira
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.41
    • /
    • pp.12.1-12.5
    • /
    • 2019
  • Background: Le Fort I osteotomy is one of the surgical procedures now routinely and safely performed. It is possible to move the maxilla in three dimensions, but it is necessary to separate the bones around the maxillary sinus. Therefore, with surgery, maxillary sinus mucosal thickening occurs. By knowing the changes in the sinus mucosa after surgery and the factors affecting it, it is possible to better predict the outcomes of surgery and contribute to safer surgery. In this study, thickening of maxillary sinus mucosa before and after surgery in Le Fort I osteotomy was evaluated using multidetector-row computed tomography (MDCT) images, and the changes in mucosal thickening and the related factors were examined. Methods: Using MDCT images, the maxillary sinus mucosa of 125 patients who had undergone Le Fort I osteotomy was retrospectively evaluated before surgery, 1 month after surgery, and 1 year after surgery. On the MDCT images, the maxillary sinus was judged as mucosal thickening and classified into three grades according to the proportion occupying the maxillary sinus. In the evaluation of factors related to mucosal thickening, the following eight factors were examined: sex, age, diagnosis, operating time, amount of postoperative bleeding, with/without bone graft, with/without multisegmental osteotomy, and with/without macrolide therapy after surgery. Results: The mean age at the time of surgery was 25.6 ± 8 years. Of all 125 patients, 66 had bilateral thickening, 19 had unilateral thickening, and 40 had no thickening. Factors that were significantly related to mucosal thickening were the operative time for the maxilla, bone grafts, and macrolide therapy after surgery. Conclusions: Operative time for the maxilla, bone grafts, and macrolide therapy after surgery were found to be related to mucosal thickening. In addition, MDCT scanning 1 month after surgery was considered to be appropriate for evaluation of maxillary sinus mucosal thickening.

Cloning of tlrD, 23S rRNA Monomethyltransferase Gene, Overexpression in Eschepichia coli and Its Activity (235 rRNA Monomethyltransferase인 tlrD의 클로닝, 이의 대장균에서 대량생산과 활성 검색)

  • Jin, Hyung-Jong
    • Korean Journal of Microbiology
    • /
    • v.43 no.3
    • /
    • pp.166-172
    • /
    • 2007
  • ERM proteins transfer the methyl group to $A_{2058}$ in 23S rRNA, which reduces the affinity of MLS (macrolide-lincosamide-streptogramin B) antibiotics to 23S rRNA, thereby confer the antibiotic resistance on micro-organisms ranging from antibiotic producers to pathogens and are classified into monomethyltransferase and dimethyltransferase. To investigate the differences between mono- and dimethyltransferase, tirD, a representative monomethylase gene was cloned in Escherichia coli from Streptomyces fradiae which contains ermSF, dimethylase gene as well to overexpress the TlrD for the first time. T7 promoter driven expression system successfully overexpress tlrD as a insoluble aggregate at $37^{\circ}C$ accumulating to around 55% of the total cell protein but unlike ErmSF, culturing at temperature as low as $18^{\circ}C$ did not make insoluble aggregate of protein into soluble protein. Coexpression of Thioredoxin and GroESL, chaperone was not helpful in turning into soluble protein either as in case of ErmSF. These results might suggest that differences between mono- and dimethylase could be investigated on the basis of the characteristics of protein structure. However, a very small amount of soluble protein which could not be detected by SDS-PAGE conferred antibiotic resistance on E. coli as in ErmSF which was expected from the activity exerted by monmethylase in a cell.