Browse > Article
http://dx.doi.org/10.5423/PPJ.OA.03.2019.0057

Fungichromin Production by Streptomyces padanus PMS-702 for Controlling Cucumber Downy Mildew  

Fan, Ya-Ting (Department of Plant Pathology, National Chung-Hsing University (NCHU))
Chung, Kuang-Ren (Department of Plant Pathology, National Chung-Hsing University (NCHU))
Huang, Jenn-Wen (Department of Plant Pathology, National Chung-Hsing University (NCHU))
Publication Information
The Plant Pathology Journal / v.35, no.4, 2019 , pp. 341-350 More about this Journal
Abstract
Streptomyces padanus PMS-702 strain produces a polyene macrolide antibiotic fungichromin and displays antagonistic activities against many phytopathogenic fungi. In the present study, experimental formulations were assessed to improve the production of fungichromin, the efficacy of PMS-702 on the suppression of sporangial germination, and the reduction of cucumber downy mildew caused by Pseudoperonospora cubensis. PMS-702 strain cultured in a soybean meal-glucose (SMG) medium led to low levels of fungichromin accumulation and sporangial germination suppression. Increasing medium compositions and adding plant oils (noticeably coconut oil) in SMG significantly increased fungichromin production from 68 to $1,999.6{\mu}g/ml$. Microscopic examination reveals that the resultant suspensions significantly reduced sporangial germination and caused cytoplasmic aggregation. Greenhouse trials reveal that the application of PMS-702 cultural suspensions reduced downy mildew severity considerably. The addition of Tween 80 into the synthetic medium while culturing PMS-702 further increased the suppressive efficacy of downy mildew severity, particularly when applied at 24 h before inoculation or co-applied with inoculum. Fungichromin at $50{\mu}g/ml$ induced phytotoxicity showing minor necrosis surrounded with light yellowish halos on cucumber leaves. The concentration that leads to 90% inhibition (IC90) of sporangial germination was estimated to be around $10{\mu}g/ml$. The results provide a strong possibility of using the S. padanus PMS-702 strain as a biocontrol agent to control other plant pathogens.
Keywords
bioformulation; biological control agent; polyene macrolide antibiotic; Pseudoperonospora cubensis; Streptomyces padanus;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Savory, E. A., Granke, L. L., Quesada-Ocampo, L. M., Varbanova, M., Hausbeck, M. K. and Day, B. 2011. The cucurbit downy mildew pathogen Pseudoperonospora cubensis. Mol. Plant Pathol. 12:217-226.   DOI
2 Shih, H. D. 2003. Control of crop diseases with Streptomyces padanus PMS-702 and identification of fungichromin as its major antifungal metabolite related to suppress plant pathogens. Ph.D. thesis. National Chung Hsing University, Taichung, Taiwan (in Chinese).
3 Shih, H. D., Liu, Y. C., Hsu, F. L., Mulabagal, V., Dodda, R. and Huang, J. W. 2003. Fungichromin: a substance from Streptomyces padanus with inhibitory effects on Rhizoctonia solani. J. Agric. Food Chem. 51:95-99.   DOI
4 Thomas, C. E. and Jourdain, E. L. 1992. Host effect on selection of virulence factors affecting sporulation by Pseudoperonospora cubensis. Plant Dis. 76:905-907.   DOI
5 Wu, J. Y., Huang, J. W., Shih, H. D., Lin, W. C. and Liu, Y. C. 2008. Optimization of cultivation conditions for fungichromin production from Streptomyces padanus PMS-702. J. Chin. Inst. Chem. Eng. 39:67-73.   DOI
6 Yuan, W. M. and Crawford, D. L. 1995. Characterization of Streptomyces lydicus WYEC108 as a potential biocontrol agent against fungal root and seed rots. Appl. Environ. Microbiol. 61:3119-3128.   DOI
7 Zang, C. Z., Chang, Y. N., Chen, H. B., Wu, J. Y., Chen, C. I., Huang, J. W., Shih, H. D. and Liu, Y. C. 2011. Deciphering the roles of fatty acids and oils in fungichromin enhancement from Streptomyces padanus. J. Taiwan Inst. Chem. Eng. 42:413-418.   DOI
8 Holmes, G. J., Main, C. E. and Keever III, Z. T. 2004. Cucurbit downy mildew: a unique pathosystem for disease forecasting. In: Advances in Downy Mildew Research-Volume 2. Developments in Plant Pathology, eds. by P. T. N. Spencer-Phillips and M. Jeger, pp. 69-80. Springer, Dordrecht, Netherlands.
9 Ohta, N., Park, Y. S., Yahiro, K. and Okabe, M. 1995. Comparison of neomycin production from Streptomyces fradiae cultivation using soybean oil as the sole carbon source in an airlift fermentor and a stirred-tank reactor. J. Ferment. Bioeng. 79:443-448.   DOI
10 Thomas, C. E. 1996. Downy mildew. In: Compendium of cucurbit diseases, eds. by T. A. Zitter, D. L. Hopkins and C. E. Thomas, pp. 25-27. APS Press, St. Paul, MN, USA.
11 Palti, J. and Cohen, Y. 1980. Downy mildew of cucurbits (Pseudoperonospora cubensis): The fungus and its hosts, distribution, epidemiology and control. Phytoparasitica 8:109-147.   DOI
12 Reuveni, M., Eyal, H. and Cohen, Y. 1980. Development of resistance to metalaxyl in Pseudoperonospora cubensis. Plant Dis. 64:1108-1109.   DOI
13 Peng, Y. H., Chou, Y. J., Liu, Y. C., Jen, J. F., Chung, K. R. and Huang, J. W. 2017. Inhibition of cucumber Pythium dampingoff pathogen with zoosporicidal biosurfactants produced by Bacillus mycoides. J. Plant Dis. Prot. 124:481-491.   DOI
14 Quesada-Ocampo, L. M., Granke, L. L., Oslen, J., Gutting, H. C., Runge, F., Thines, M., Lebeda, A. and Hausbeck, M. K. 2012. The genetic structure of Pseudoperonospora cubensis populations. Plant Dis. 96:1459-1470.   DOI
15 Raatikainen, O., Tuomisto, J., Tahvonen, R. and Rosenqvist, H. 1993. Polyene production of antagonistic Streptomyces species isolated from Sphagnum peat. Agric. Food Sci. 2:551-560.   DOI
16 Robison, R. S., Aszalos, A., Kraemer, N. and Giannini, S. M. 1971. Production of fungichromin by Streptomyces cinnamomeum subsp. cinnamomeum NRRL B-1285. J. Antibiot. 24:273.   DOI
17 Russell, P. E. 2002. Sensitivity baselines in fungicide resistance research and management. Crop Life International, Brussels, Belgium. 56 pp.
18 Huang, J. W., Shih, H. D., Huang, H. C. and Chung, W. C. 2007. Effect of nutrients on production of fungichromin by Streptomyces padanus PMS-702 and efficacy of control of Phytophthora infestans. Can. J. Plant Pathol. 29:261-267.   DOI
19 Harrison, P. H., Noguchi, H. and Vederas, J. C. 1986. Biosynthesis of polyene antibiotics: intact incorporation of 13C-labeled octanoate into fungichromin by Streptomyces cellulosae. J. Am. Chem. Soc. 108:3833-3834.   DOI
20 Heaney, S., Hall, A., Davies, S. and Olaya, G. 2000. Resistance to fungicides in the QoI-STAR cross-resistance group: current perspectives. In: Brighton Crop Protection Conference:Pests and Diseases, eds. by S. Heaney, A. Hall, S. Davies and G. Olaya, pp. 755-762. Brighton Crop Protection Council, Brighton, UK.
21 Lan, G., Fan, Q., Liu, Y., Chen, C., Li, G., Liu, Y. and Yin, X. 2015. Rhamnolipid production from waste cooking oil using Pseudomonas SWP-4. Biochem. Eng. J. 101:44-54.   DOI
22 Lebeda, A. and Cohen, Y. 2011. Cucurbit downy mildew (Pseudoperonospora cubensis)-biology, ecology, epidemiology, host-pathogen interaction and control. Eur. J. Plant Pathol. 129:157-192.   DOI
23 Makkar, R. S., Cameotra, S. S. and Banat, I. M. 2011. Advances in utilization of renewable substrates for biosurfactant production. AMB Express 1:5.   DOI
24 Bubici, G. 2018. Streptomyces spp. as biocontrol agents against Fusarium species. CAB Rev. 13:050.   DOI
25 Doria, R. G. S., Freitas, S. H., Linardi, R. L., Mendonca, F. D., Arruda, L. P., Boabaid, F. M. and Valadao, C. A. A. 2012. Treatment of pythiosis in equine limbs using intravenous regional perfusion of amphotericin B. Vet. Surg. 41:759-765.   DOI
26 Eyres, L., Eyres, M. F., Chisholm, A. and Brown, R. C. 2016. Coconut oil consumption and cardiovascular risk factors in humans. Nutr. Rev. 74:267-280.   DOI
27 Haggag, W. M. 2002. Application of epidermal coating antitranspirants for controlling cucumber downy mildew in greenhouse. Plant Pathol. Bull. 11:69-78.
28 Maki, K. C., Hasse, W., Dicklin, M. R., Bell, M., Buggia, M. A., Cassens, M. E. and Eren, F. 2018. Corn oil lowers plasma cholesterol compared with coconut oil in adults with abovedesirable levels of cholesterol in a randomized crossover trial. J. Nutr. 148:1556-1563.   DOI
29 Baginski, M., Czub, J. and Sternal, K. 2006. Interaction of amphotericin B and its selected derivatives with membranes:molecular modeling studies. Chem. Rec. 6:320-332.   DOI
30 Balmer, J. A. 2008. Treatment of vaginal infections with intravaginal pentamycin in clinical practice. Internet. J. Gynecol. Obstet. 11:1.
31 Chen, Y. Y., Chen, P. C. and Tsay, T. T. 2016. The biocontrol efficacy and antibiotic activity of Streptomyces plicatus on the oomycete Phytophthora capsici. Biol. Control 98:34-42.   DOI
32 Cohen, Y. 2015. The novel oomycide oxathiapiprolin inhibits all stages in the asexual life cycle of Pseudoperonospora cubensis-causal agent of cucurbit downy mildew. PLoS One 10:e0140015.   DOI
33 Choi, D. B., Tamura, S., Park, Y. S., Okabe, M., Seriu, Y. and Takeda, S. 1996. Efficient tylosin production from Streptomyces fradiae using rapeseed oil. J. Ferment. Bioeng. 82:183-186.   DOI
34 Choi, D. B., Park, S. S., Ahn, B. K., Lim, D. H., Lee, Y. W., Moon, J. H. and Shin, D. Y. 2008. Studies on production of gentamicin from Micromonosporas purpurea using crude vegetable oils. Proc. Biochem. 43:835-841.   DOI
35 Chou, D. K., Krishnamurthy, R., Randolph, T. W., Carpenter, J. F. and Manning, M. C. 2005. Effects of Tween 20 and Tween 80 on the stability of Albutropin during agitation. J. Pharm. Sci. 94:1368-1381.   DOI
36 Cohen, Y., Rubin, A. E., Galperin, M., Ploch, S., Runge, F. and Thines, M. 2014. Seed transmission of Pseudoperonospora cubensis. PLoS One 9:e109766.   DOI