DOI QR코드

DOI QR Code

Mutational Analysis Elucidates the Role of Conserved 237 Arginine in 23S rRNA Methylation, Which is in the Concave Cleft Region of ErmSF

ErmSF에서 두 도메인 사이에 존재하는 잘 보존된 237번 아르지닌 잔기의 위치 지정 치환 변이의 효소 활성 검색을 통한 역할 규명

  • Jin, Hyung Jong (Department of Bioscience and Biotechnology, College of Natural Science, The University of Suwon)
  • 진형종 (수원대학교 자연과학대학 생명공학과)
  • Received : 2013.06.03
  • Accepted : 2013.06.19
  • Published : 2013.06.30

Abstract

The Erm family of adenine-$N^6$ methyltransferases (MTases) is responsible for the development of resistance to macrolide-lincosamide-streptogramin B antibiotics through the methylation of 23S ribosomal RNA. Recently, it has been proposed that well conserved amino acids in ErnC' located in concave cleft between N-terminal 'catalytic' domain and C-terminal 'RNA-binding' domain interacts with substrate RNA. We carried out the site-directed mutagenesis and studied the function of the ErmSF R237 mutant in vitro and in vivo. R237 amino acid residue is located in the concave cleft between two domains. Furthermore this residue is very highly conserved in almost all the Erm family. Purified mutant protein exhibited only 51% enzyme activity compared to wild-type. Escherichia coli with R237A mutant protein compared to the wild-type protein expressing E. coli did not show any difference in its MIC (minimal inhibitory concentration) suggesting that even with lowered enzyme activity, mutant protein was able to efficiently methylate 23S rRNA to confer the resistance on E. coli expressing this protein. But this observation strongly suggests that R237 of ErmSF probably interacts with substrate RNA affecting enzyme activity significantly.

Erm 단백질은 23S rRNA의 특정 아데닌 잔기 $N_6$ 위치에 methylation을 일으켜 임상적으로 중요하게 사용되는 macrolide-lincosamide-streptogramin B계 항생제에 내성을 유발시킨다. 최근 ErmC'에서 N-말단 catalytic domain과 C-말단 substrate binding domain를 연결하는 오목한 홈 형성부위에 존재하는 잘 보존된 아미노산 잔기가 기질과 상호작용하는 것으로 제안되었다. 우리는 ErmSF에서 두 domain의 연결 부위의 오목한 홈에 위치하여 기질과의 상호작용이 예상되며 또한 Erm 단백질들 사이에서 매우 높게 보존되어있는 237번 아르지닌 잔기를 치환하여 그 기능을 in vivo, in vitro상에서 검색하여 분석하였다. R237A 변이 단백질을 발현하는 세균은 야생형 단백질을 발현하는 세균과 비교하여 in vivo 상에서는 차이를 나타내지 않았으나 순수분리 한 후 in vitro에서의 효소 활성은 야생형에 비하여 51%만을 나타내어 그 잔기가 기질 부착 기능을 수행하고 있다고 제안할 수 있었다.

Keywords

References

  1. Birmingham, V.A., Cox, K.L., Larson, J.L., Fishman, S.E., Hershberger, C.L., and Seno, E.T. 1986. Cloning and expression of a tylosin resistance gene from a tylosin-producing strain of Streptomyces fradiae. Mol. Gen. Genet. 204, 532-539. https://doi.org/10.1007/BF00331036
  2. Bujnicki, J.M. 1999. Comparison of protein structures reveals monophyletic origin of the AdoMet dependent methyltransferase family and mechanistic convergence rather than recent differentiation of N4-cytosine and N6-adenine DNA methylation. In Silico Biol. 1, 1-8.
  3. Bussiere, D.E., Muchmore, S.W., Dealwis, C.G., Schluckebier, G., Nienaber, V.L., Edalji, R.P., Walter, K.A., Ladror, U.S., Holzman, T.F., and Abad-Zapatero, C. 1998. Crystal structure of ErmC', an rRNA methyltransferase which mediates antibiotic resistance in bacteria. Biochemistry 37, 7103-7112. https://doi.org/10.1021/bi973113c
  4. Cocito, C., Di, Giambattista, M., Nyssen, E., and Vannuffel, P. 1997. Inhibition of protein synthesis by streptogramins and related antibiotics. Antimicrob. Agents Chemother. 39, 7-13. https://doi.org/10.1093/jac/39.suppl_1.7
  5. Cundliffe, E. 1989. How antibiotic-producing organisms avoid suicide. Annu. Rev. Microbiol. 43, 207-223. https://doi.org/10.1146/annurev.mi.43.100189.001231
  6. Fauman, E.B., Blumenthal, R.M., and Cheng, X. 1999. Structure and evolution of AdoMet-dependent MTases. S-Adenosylmethioninedependent Methyltransferases: Structures and Functions, pp. 1-38. In Cheng, X. and Blumenthal, R.M. (eds.), World Scientific Inc, Singapore.
  7. Goedecke, K., Pignot, M., Goody, R.S., Scheidig, A.J., and Weinhold, E. 2001. Structure of the N6-adenine DNA methyltransferase M.Taq I in complex with DNA and a cofactor analog. Nature Struct. Biol. 8, 121-125. https://doi.org/10.1038/84104
  8. Jin, H.J. 1999. ErmSF, a ribosomal RNA adenine N6-methyltransferase gene from Streptomyces fradiae, confers MLS(macrolide-lincosamidestreptogramin B) resistance to E. coli when it is expressed. Mol. Cells 9, 252-257.
  9. Jin, H.J. 2001. Domain expression of ErmSF, MLS(macrolide-lincosamidestreptogramin B) antibiotic resistance factor protein. Kor. J. Microbiol. 37, 245-252.
  10. Jin, H.J. 2006. Functional role of peptide segment containing 1-25 amino acids in N-terminal end region of ErmSF. Kor. J. Microbiol. 42, 165-171.
  11. Jin, H.J. 2008. Functional role of 60RR61 in 23S rRNA methylation, which is in N-terminal end region of ErmSF. Kor. J. Microbiol. 44, 193-198.
  12. Jin, H.J. 2011. Investigation on inhibitory effect of ErmSF N-terminal end region peptide on ErmSF methyltansferase activity in vivo through development of co-expression system of two different proteins in one cell. Kor. J. Microbiol. 47, 200-208.
  13. Jin, H.J. and Yang, Y.D. 2002. Purification and biochemical characterization of the ErmSF macrolide-lincosamide-streptogramin B resistance factor protein expressed as a hexahistidine-tagged protein in Escherichia coli. Protein Expr. Purif. 25, 149-159. https://doi.org/10.1006/prep.2002.1621
  14. Kovalic, D., Giannattasio, R.B., Jin, H.J., and Weisblum, B. 1994. 23S rRNA Domain V, a fragment that can be specifically methylated in vitro by the ErmSF(TlrA) methyltransferase. J. Bacteriol. 176, 6992-6998. https://doi.org/10.1128/jb.176.22.6992-6998.1994
  15. Lai, C.J., Weisblum, B., Fahnestock, S.R., and Nomura, M. 1973. Alteration of 23S ribosomal RNA and erythromycin-induced resistance to lincomycin and spiramycin in Staphylococcus aureus. J. Mol. Biol. 74, 67-72. https://doi.org/10.1016/0022-2836(73)90355-0
  16. Leclercq1, R. and Courvalin, P. 1991. Bacterial resistance to macrolide, lincosamide, and streptogramin antibiotics by target modification. Antimicrob. Agents Chemother. 35, 1267-1272. https://doi.org/10.1128/AAC.35.7.1267
  17. Malone, T., Blumenthal, R.M., and Cheng, X. 1995. Structure-guided analysis reveals nine sequence motifs conserved among DNA amino-methyltransferases, and suggests a catalytic mechanism for these enzymes. J. Mol. Biol. 253, 618-632. https://doi.org/10.1006/jmbi.1995.0577
  18. Marabic, G., Bujnicki, J.M., Feder, M., Pongor, S., and Flogel, M. 2003. Alanine-scanning mutagenesis of the predicted rRNA-binding domain of ErmC' redefines the substrate-binding site and suggests a model for protein-RNA interactions. Nucleic Acids Res. 31, 4941-4949. https://doi.org/10.1093/nar/gkg666
  19. Park, A.K., Kim, H., and Jin, H.J. 2010. Phylogenetic analysis of rRNA methyltransferases, Erm and KsgA, as related to antibiotic resistance. FEMS Microbiol. Lett. 309, 151-162.
  20. Roberts, M.C. 2004. Resistance to macrolide, lincosamide, streptogramin, ketolide, and oxazolidinone antibiotics. Mol. Biotechnol. 28, 47-62. https://doi.org/10.1385/MB:28:1:47
  21. Roberts, M.C., Sutcliffe, J., Courvalin, P., Jensen, L.B., Rood, J., and Seppala, H. 1999. Nomenclature for macrolide and macrolidelincomycin-streptogramin B resistance determinants. Antimicrob. Agents Chemother. 43, 2823-2830.
  22. Schluckebier, G., Zhong, P., Stewart, K.D., Kavanaugh, T.J., and Abad-Zapatero, C. 1999. The 2.2 A structure of the rRNA methyltransferase ErmC' and its complexes with cofactor and cofactor analogs: implications for the reaction mechanism. J. Mol. Biol. 289, 277-291. https://doi.org/10.1006/jmbi.1999.2788
  23. Seppala, H., Skurnik, M., Soini, H., Roberts, M.C., and Huovinen, P. 1998. A novel erythromycin resistance methylase gene (ermTR) in Streptococcus pyogenes. Antimicrob. Agents Chemother. 42, 257-262. https://doi.org/10.1093/jac/42.2.257
  24. Skinner, R., Cundliffe, E., and Schmidt, F.J. 1983. Site for action of a ribosomal RNA methylase responsible for resistance to erythromycin and other antibiotics. J. Biol. Chem. 258, 12702-12706.
  25. Studier, F.W. and Moffatt, B.A. 1986. Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J. Mol. Biol. 189, 113-130. https://doi.org/10.1016/0022-2836(86)90385-2
  26. Vester, B. and Douthwaite, S. 1994. Domain V of 23S rRNA contains all the structural elements necessary for recognition by the ErmE methyltransferase. J. Bacteriol. 176, 6999-7004. https://doi.org/10.1128/jb.176.22.6999-7004.1994
  27. Weisblum, B. 1995. Erythromycin resistance by ribosome modification. Antimicrob. Agents Chemother. 39, 577-585. https://doi.org/10.1128/AAC.39.3.577
  28. Yu, L., Petros, A.M., Schnuchel, A., Zhong, P., Severin, J.M., Walter, K., Holzman, T.F., and Fesik, S.W. 1997. Solution structure of an rRNA methyltransferase (ErmAM) that confers macrolide-lincosamidestreptogramin antibiotic resistance. Nature Struct. Biol. 4, 483-489. https://doi.org/10.1038/nsb0697-483
  29. Zalacain, M. and Cundliffe, E. 1989. Methylation of 23S rRNA by tlrA(ermSF), a tylosin resistance determinant from Streptomyces fradiae. J. Bacteriol. 171, 4254-4260. https://doi.org/10.1128/jb.171.8.4254-4260.1989