DOI QR코드

DOI QR Code

Incidence of Erythromycin Resistance Genes, erm(B) and mef(A), in Streptococci Isolated from Dental Plaques of Koreans

  • Kim, Yeon-Hee (Department of Oral Microbiology, College of Dentistry, Research Institute of Oral Science, Gangneung-Wonju National University) ;
  • Lee, Si-Young (Department of Oral Microbiology, College of Dentistry, Research Institute of Oral Science, Gangneung-Wonju National University)
  • Received : 2013.02.26
  • Accepted : 2013.04.29
  • Published : 2013.06.30

Abstract

Erythromycin is a macrolide antibiotic and inhibits bacterial protein synthesis by stimulating the dissociation of the peptidyl-tRNA molecule from the ribosomes during elongation. The use of macrolides has increased dramatically over the last few years and has led to an increase in bacterial resistance to these antibiotics. Bacterial resistance to erythromycin is generally conferred by the ribosome methylation and/or transport (efflux) protein genes. Among the identified erythromycin-resistant genes, erm(B) (erythromycin methylation) and mef(A) (macrolide efflux) are generally detectable in erythromycin-resistant streptococcal species. The distribution of these genes in oral streptococcal isolates has been reported in studies from other countries but has not been previously examined in a Korean study. We here examined by PCR the presence of erm(B) and mef(A) in oral streptococci isolated from Korean dental plaques. Among the 57 erythromycin-resistant strains tested, 64.9% harbored erm(B) whereas 40.4% were positive for mef(A). Eleven isolates had both the erm(B) and mef(A) genes. Twenty six isolates had only erm(B) and 12 isolates had only mef(A). Eight of the 57 strains examined were negative for both genes.

Keywords

References

  1. Jorro G, Morales C, Braso JV, Pelaez A. Anaphylaxis to erythromycin. Ann Allergy Asthma Immunol. 1996;77: 456-8. https://doi.org/10.1016/S1081-1206(10)63349-2
  2. Allignet J, Loncle V, el Sohl N. Sequence of a staphylococcal plasmid gene, vga, encoding a putative ATP- binding protein involved in resistance to virginiamycin A-like antibiotics. Gene. 1992;117:45-51. https://doi.org/10.1016/0378-1119(92)90488-B
  3. Roberts MC, Sutcliffe J, Courvalin P, Jensen LB, Rood J, Seppala H. Nomenclature for macrolide and macrolidelincosamide- streptogramin B resistance determinants. Antimicrob Agents Chemother. 1999;43:2823-30.
  4. Chong Y, Lee K. Present situation of antimicrobial resistance in Korea. J Infect Chemother. 2000;6:189-95. https://doi.org/10.1007/s101560070001
  5. Song Y, Lee HK, Ji E, Oh JM. Patterns of antibiotic usage in clinics and pharmacy after separation of dispensary from medical practice. Kor J Clin Pharm. 2011;21:332-8.
  6. Uh Y, Jang IH, Hwang GY, Yoon KJ, Song W. Emerging erythromycin resistance among group B streptococci in Korea. Eur J Clin Microbiol Infect Dis. 2001;20:52-4.
  7. Seppala H, Skurnik M, Soini H, Roberts MC, Huovinen P. A novel erythromycin resistance methylase gene (ermTR) in Streptococcus pyogenes. Antimicrob Agents Chemother. 1998;42:257-62. https://doi.org/10.1093/jac/42.2.257
  8. Gulay Z, Ozbek OA, Bicmen M, Gur D. Macrolide resistance determinants in erythromycin-resistant Streptococcus pneumoniae in turkey. Jpn J Infect Dis. 2008;61:490-3.
  9. Kataja J, Seppala H, Skurnik M, Sarkkinen H, Huovinen P. Different erythromycin resistance mechanisms in group C and group G streptococci. Antimicrob Agents Chemother. 1998;42:1493-4.
  10. Seppala H, Nissinen A, Yu Q, Huovinen P. Three different phenotypes of erythromycin-resistant Streptococcus pyogenes in finland. J Antimicrob Chemother. 1993;32: 885-91. https://doi.org/10.1093/jac/32.6.885
  11. Sutcliffe J, Tait-Kamradt A, Wondrack L. Streptococcus pneumoniae and Streptococcus pyogenes resistant to macrolides but sensitive to clindamycin: A common resistance pattern mediated by an efflux system. Antimicrob Agents Chemother. 1996;40:1817-24.
  12. Luna VA, Coates P, Eady EA, Cove JH, Nguyen TT, Roberts MC. A variety of gram-positive bacteria carry mobile mef genes. J Antimicrob Chemother. 1999;44:19-25.
  13. Leclercq R, Courvalin P. Bacterial resistance to macrolide, lincosamide, and streptogramin antibiotics by target modification. Antimicrob Agents Chemother. 1991;35:1267-72. https://doi.org/10.1128/AAC.35.7.1267
  14. Ardanuy C, Tubau F, Linares J, Dominguez MA, Pallares R, Martin R, Spanish Pneumococcal Infection Study Network (G03/103). Distribution of subclasses mefA and mefE of the mefA gene among clinical isolates of macrolideresistant (M-phenotype) Streptococcus pneumoniae, viridans group streptococci, and Streptococcus pyogenes. Antimicrob Agents Chemother. 2005;49:827-9. https://doi.org/10.1128/AAC.49.2.827-829.2005
  15. Ono T, Shiota S, Hirota K, Nemoto K, Tsuchiya T, Miyake Y. Susceptibilities of oral and nasal isolates of Streptococcus mitis and Streptococcus oralis to macrolides and PCR detection of resistance genes. Antimicrob Agents Chemother. 2000;44:1078-80. https://doi.org/10.1128/AAC.44.4.1078-1080.2000
  16. Arpin C, Canron MH, Maugein J, Quentin C. Incidence of mefA and mefE genes in viridans group streptococci. Antimicrob Agents Chemother. 1999;43:2335-6.
  17. Clinical and Laboratory Standards Institute. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically, M07-A8, vol. 29, no. 2, 8th ed., CLSI. Wayne, PA, 2009.
  18. Klugman KP, Capper T, Widdowson CA, Koornhof HJ, Moser W. Increased activity of 16-membered lactone ring macrolides against erythromycin-resistant Streptococcus pyogenes and Streptococcus pneumoniae: Characterization of south african isolates. J Antimicrob Chemother. 1998;42: 729-34. https://doi.org/10.1093/jac/42.6.729
  19. Latini L, Ronchetti MP, Merolla R, Merolla R, Guglielmi F, Bajaksouzian S, Villa MP, Jacobs MR, Ronchetti R. Prevalence of mefE, erm and tet(M) genes in Streptococcus pneumoniae strains from central italy. Int J Antimicrob Agents. 1999;13:29-33. https://doi.org/10.1016/S0924-8579(99)00097-7
  20. Setchanova L, Tomasz A. Molecular characterization of penicillin- resistant Streptococcus pneumoniae isolates from Bulgaria. J Clin Microbiol. 1999;37:638-48.
  21. Shortridge VD, Doern GV, Brueggemann AB, Beyer JM, Flamm RK. Prevalence of macrolide resistance mechanisms in Streptococcus pneumoniae isolates from a multicenter antibiotic resistance surveillance study conducted in the united states in 1994-1995. Clin Infect Dis. 1999;29: 1186-8. https://doi.org/10.1086/313452
  22. Tazumi A, Maeda Y, Goldsmith CE, Coulter WA, Mason C, Millar BC, McCalmont M, Rendall J, Elborn JS, Matsuda M, Moore JE. Molecular characterization of macrolide resistance determinants [erm(B) and mef(A)] in Streptococcus pneumoniae and viridans group streptococci (VGS) isolated from adult patients with cystic fibrosis (CF). J Antimicrob Chemother. 2009;64:501-6. https://doi.org/10.1093/jac/dkp213
  23. Clancy J, Petitpas J, Dib-Hajj F, Yuan W, Cronan M, Kamath AV, Bergeron J, Retsema JA. Molecular cloning and functional analysis of a novel macrolide-resistance determinant, mefA, from Streptococcus pyogenes. Mol Microbiol. 1996;22:867-79. https://doi.org/10.1046/j.1365-2958.1996.01521.x
  24. Tait-Kamradt A, Clancy J, Cronan M, Dib-Hajj F, Wondrack L, Yuan W, Sutcliffe J. mefE is necessary for the erythromycin- resistant M phenotype in Streptococcus pneumoniae. Antimicrob Agents Chemother. 1997;41:2251-5.
  25. Sutcliffe J, Grebe T, Tait-Kamradt A, Wondrack L. Detection of erythromycin-resistant determinants by PCR. Antimicrob Agents Chemother. 1996;40:2562-6.
  26. Horinouchi S, Byeon WH, Weisblum B. A complex attenuator regulates inducible resistance to macrolides, lincosamides, and streptogramin type B antibiotics in Streptococcus sanguis. J Bacteriol. 1983;154:1252-62.
  27. Schmitz FJ, Perdikouli M, Beeck A, Verhoef J, Fluit AC. Molecular surveillance of macrolide, tetracycline and quinolone resistance mechanisms in 1191 clinical european Streptococcus pneumoniae isolates. Int J Antimicrob Agents. 2001;18:433-6. https://doi.org/10.1016/S0924-8579(01)00427-7
  28. Nagai K, Appelbaum PC, Davies TA, Kelly LM, Hoellman DB, Andrasevic AT, Drukalska L, Hryniewicz W, Jacobs MR, Kolman J, Miciuleviciene J, Pana M, Setchanova L, Thege MK, Hupkova H, Trupl J, Urbaskova P. Susceptibilities to telithromycin and six other agents and prevalence of macrolide resistance due to L4 ribosomal protein mutation among 992 pneumococci from 10 central and eastern european countries. Antimicrob Agents Chemother. 2002;46: 371-7. https://doi.org/10.1128/AAC.46.2.371-377.2002
  29. Weisblum B. Macrolide resistance. Drug Resist Updat. 1998;1:29-41. https://doi.org/10.1016/S1368-7646(98)80212-4
  30. Allignet J, Liassine N, el Solh N. Characterization of a staphylococcal plasmid related to pUB110 and carrying two novel genes, vatC and vgbB, encoding resistance to streptogramins A and B and similar antibiotics. Antimicrob Agents Chemother. 1998;42:1794-8.
  31. Ergin A, Eser OK, Hascelik G. Erythromycin and penicillin resistance mechanisms among viridans group streptococci isolated from blood cultures of adult patients with underlying diseases. New Microbiol. 2011;34:187-93.
  32. Arpin C, Daube H, Tessier F, Quentin C. Presence of mefA and mefE genes in Streptococcus agalactiae. Antimicrob Agents Chemother. 1999;43:944-6.