Cloning of tlrD, 23S rRNA Monomethyltransferase Gene, Overexpression in Eschepichia coli and Its Activity

235 rRNA Monomethyltransferase인 tlrD의 클로닝, 이의 대장균에서 대량생산과 활성 검색

  • Jin, Hyung-Jong (Department of Bioscience and Biotechnology, College of Natural Science, The University of Suwon)
  • 진형종 (수원대학교 자연과학대학 생명공학과)
  • Published : 2007.09.30

Abstract

ERM proteins transfer the methyl group to $A_{2058}$ in 23S rRNA, which reduces the affinity of MLS (macrolide-lincosamide-streptogramin B) antibiotics to 23S rRNA, thereby confer the antibiotic resistance on micro-organisms ranging from antibiotic producers to pathogens and are classified into monomethyltransferase and dimethyltransferase. To investigate the differences between mono- and dimethyltransferase, tirD, a representative monomethylase gene was cloned in Escherichia coli from Streptomyces fradiae which contains ermSF, dimethylase gene as well to overexpress the TlrD for the first time. T7 promoter driven expression system successfully overexpress tlrD as a insoluble aggregate at $37^{\circ}C$ accumulating to around 55% of the total cell protein but unlike ErmSF, culturing at temperature as low as $18^{\circ}C$ did not make insoluble aggregate of protein into soluble protein. Coexpression of Thioredoxin and GroESL, chaperone was not helpful in turning into soluble protein either as in case of ErmSF. These results might suggest that differences between mono- and dimethylase could be investigated on the basis of the characteristics of protein structure. However, a very small amount of soluble protein which could not be detected by SDS-PAGE conferred antibiotic resistance on E. coli as in ErmSF which was expected from the activity exerted by monmethylase in a cell.

ERM 단백질은 23S rRNA의 A2058에 methylation시킴으로써 macrolide-lincosamide- streptogramin B $(MLS_B)$계 항생제의 부착을 저해하여 항생제의 활성을 억제하는 내성 인자 단백질로 monomethylase와 dimethylase로 나누어진다. Dimethylase와 비교되는 monomethylase의 특성을 밝히기 위해 dimethylase (ErmSF)와 monomethylase (TlrD)를 동시에 보유한 Streptomyces fradiae에서 tlrD를 클론하고 대장균에서 최초로 대략생산을 시도하여 $37^{\circ}C$에서 세포내 전체 단백질의 55%를 차지할 정도로 대량생산된 불용성 단백질을 얻어내었다. 그러나 ErmSF와는 달리 낮은 온도에서 대량생산된 단백질이 용해성 단백질로 전환되지 않고 불용성 단백질로 남아있었다. Thioredoxin과 샤페론인 GroESL은 모두 ErmSF의 경우와 마찬가지로 용해성 단백질로의 전환에 도움을 주지 않았다. 이러한 차이점은 천재까지 전혀 밝혀지지 않은 단백질내의 구조적 특성에 의한 monomethylase와 dimethylase의 차이점을 밝힐 수 있다는 가능성을 말해주는 것으로 추정된다. 그러나 ErmSF의 경우와 동일하게 SDS-PAGE에서 검색되지 않은 미량의 발현된 용해성 단백질이 TlrD를 함유한 세포에 항생제에 대한 내성을 나타내게 하였고 이렇게 발현된 내성은 monomethylase에 의한 내성에서 기대되는 내성과 일치하였다.

Keywords

References

  1. 진형종 2001. MLS (macrolide-lincosamide-streptogramin B) 항생제 내성인자 단백질인ErmSF의 domain발현. 한국미생물학회지 37, 245-252
  2. Birmingham, V.A., K.L. Cox, J.L. Larson, S.E. Fishman, C.L. Hershberger, and E.T. Seno. 1986. Cloning and expression of a tylosin resistance gene from a tylosin-producing strain of Streptomyces fradiae. Mol. Gen. Genet. 204, 532-539 https://doi.org/10.1007/BF00331036
  3. Blackwell, J.R. and R. Horgan. 1991. A novel strategy for production of a highly expresssed recombinant protein in an active form. FEBS Lett. 295, 10-12 https://doi.org/10.1016/0014-5793(91)81372-F
  4. Denoya, C. and D. Dubnau. 1989. Mono- and dimethylating activities and kinetic studies of the ermC 23S rRNA methyltransferase. J BioI. Chem. 264,2615-2624
  5. 'Frontiers in Biotechnology: Antibiotic Resistance' 1994. Science 264,317-476
  6. Georgiou, G. and P. Valax. 1996. Expression of correctly folded proteins in Escherichia coli. Curr. Opin. Biotechnol. 7, 190-197 https://doi.org/10.1016/S0958-1669(96)80012-7
  7. Jin, H.J. 1999. ermSF, a ribosomal RNA adenine N6-methyltransferase gene from Streptomyces fradiae, confers MLS(macrolidelincosamide-streptogramin B) resistance to E. coli when it is expressed. Mol. Cells 9, 252-257
  8. Jin, H.J. and Y.D. Yang. 2002. Purification and biochemical characterization of the ErmSF macrolide-lincosamide-streptogramin B resistance factor protein expressed as a hexahistidine-tagged protein in Escherichia coli. Protein Expr. Purif. 25, 149-159 https://doi.org/10.1006/prep.2002.1621
  9. Kovalic, D., J.H. Kwak, and B. Weisblum. 1991. General method for direct cloning of DNA fragments generated by the polymerase chain reaction. Nucleic Acid Res. 19, 4650
  10. Kovalic, D., R.B. Giannattasio, H.J. Jin, and B. Weisblum. 1994. 23S rRNA domain V, a fragment that can be specifically methylated in vitro by the ErmSF(TlrA) methyltransferase. J Bacteriol. 176, 6992-6998 https://doi.org/10.1128/jb.176.22.6992-6998.1994
  11. Laemmli, U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T. Nature 227,680-685 https://doi.org/10.1038/227680a0
  12. LaVallie, E.R. and J.M. McCoy. 1995. Gene fusion expression systems in Eschrichia coli. Curr. Opin. Biotechnol. 6, 501-506 https://doi.org/10.1016/0958-1669(95)80083-2
  13. Lee, H.J. and H.J. Jin. 2003. Renaturation of recombinant ErmSF and its refolding behavior. Mol. Cells 16, 187-193
  14. Liu, M. and S. Douthwaite. 2002. Methylation at nucleotide G745 or G748 in 23S rRNA distinguishes gram-negative from grampositive bacteria. Mol. Microbiol. 44, 195-204 https://doi.org/10.1046/j.1365-2958.2002.02866.x
  15. Liu, M. and S. Douthwaite. 2002. Resistance to the macrolide antibiotic tylosin is conferred by single methylations at 23S rRNA nucleotides G748 and A2058 acting in synergy. Proc. Natl. Acad. Sci. USA. 99. 14658-14663
  16. Liu, M. and S. Douthwaite. 2002. Activity of the ketolide telithromycin is refractory to Erm monomethylation of bacterial rRNA. Antimicrob. Agents Chemother. 46, 1629-1633 https://doi.org/10.1128/AAC.46.6.1629-1633.2002
  17. Makrides, S.C. 1996. Strategies for achieving high-level expression of genes in Escherichia coli. Microbiol. Rev. 60, 512-538
  18. Matthews, C.R. 1993. Pathways of protein folding. Annu. Rev. Biochem. 62, 653-683
  19. Poehlsgaard, J. and S. Douthwaite. 2005. The bacterial ribosome as a target for antibiotics. Nat. Rev. Microbiol. 3,870-881 https://doi.org/10.1038/nrmicro1265
  20. Roberts, M.C., J. Sutcliffe, P. Courvalin, L.B. Jensen, J. Rood, and H. Seppala. 1999. Nomenclature for macrolide and macrolide-lincomycin-streptogramin B resistance determinants. Antimicrob. Agents Chemother. 43, 2823-2830
  21. Roberts, M.C. 2004. Resistance to macrolide, lincosamide, streptogramin, ketolide, and oxazolidinone antibiotics. Mol. Biotechnol. 28,47-62 https://doi.org/10.1385/MB:28:1:47
  22. Schluckebier, G., P. Zhong, K.D. Stewart, TJ. Kavanaugh, and C. Abad-Zapatero. 1999. The 2.2 A structure of the rRNA methyltransferase ErmC' and its complexes with cofactor and cofactor analogs: implications for the reaction mechanism. J Mol. Biol. 289, 277-291 https://doi.org/10.1006/jmbi.1999.2788
  23. Skerra, A. 1993, Bacterial expression of immunoglobulin fragments. Curr. Opin. Immunol. 5, 256-262 https://doi.org/10.1016/0952-7915(93)90014-J
  24. Skinner, R., E. Cundliffe, and F.J. Schmidt. 1983. Site for Action of a ribosomal RNA methylase responsible for resistance to erythromycin and other antibiotics. J. Biol. Chem. 258, 12702-12706
  25. Weisblum, B. 1995. Erythromycin resistance by ribosome modification. Antimicrob. Agents Chemother. 39, 577-585 https://doi.org/10.1128/AAC.39.3.577
  26. Yasukawa, T., C. Kanei-lshii, T. Maekawa, J. Fujimoto, T. Yamamoto, and S. Ishii. 1995. Increase of solubility of foreign proteins in Escherichia coli by coproduction of the bacterial thioredoxin. J. BioI. Chem. 270, 25328-25331 https://doi.org/10.1074/jbc.270.43.25328
  27. Zalacain, M. and E. Cundliffe. 1989. Methylation of 23S rRNA by tlrA(ermSF), a tylosin resistance determinant from Streptomyces fradiae. J. Bacteriol. 171, 4254-4260 https://doi.org/10.1128/jb.171.8.4254-4260.1989
  28. Zalacain, M. and E. Cundliffe. 1991. Cloning of tlrD, a fourth resistance gene, from the tylosin producer, Streptomyces fradiae. Gene 97, 137-142 https://doi.org/10.1016/0378-1119(91)90021-3