• Title/Summary/Keyword: Macro cell

Search Result 204, Processing Time 0.021 seconds

siMacro: A Fast and Easy Data Processing Tool for Cell-Based Genomewide siRNA Screens

  • Singh, Nitin Kumar;Seo, Bo Yeun;Vidyasagar, Mathukumalli;White, Michael A.;Kim, Hyun Seok
    • Genomics & Informatics
    • /
    • v.11 no.1
    • /
    • pp.55-57
    • /
    • 2013
  • Growing numbers of studies employ cell line-based systematic short interfering RNA (siRNA) screens to study gene functions and to identify drug targets. As multiple sources of variations that are unique to siRNA screens exist, there is a growing demand for a computational tool that generates normalized values and standardized scores. However, only a few tools have been available so far with limited usability. Here, we present siMacro, a fast and easy-to-use Microsoft Office Excel-based tool with a graphic user interface, designed to process single-condition or two-condition synthetic screen datasets. siMacro normalizes position and batch effects, censors outlier samples, and calculates Z-scores and robust Z-scores, with a spreadsheet output of >120,000 samples in under 1 minute.

Adaptive Frequency Resource Allocation For FFR Based Femtocell Network Environment (FFR 기반의 Femtocell 네트워크를 위한 적응 주파수 자원 할당 방법)

  • Bae, Won-Geon;Kim, Jeong-Gon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.7B
    • /
    • pp.505-516
    • /
    • 2012
  • According to distribute of resource of macro cell and reduce distance between transmitter and receiver, Femto cell system is promising to provide costeffective strategy for high data traffic and high spectral efficient services in future wireless cellular system environment. However, the co-channel operation with existing Macro networks occurs some severe interference between Macro and Femto cells. Hence, the interference cancellation or management schemes are imperative between Macro and Femto cells in order to avoid the decrease of total cell throughput. First, we briefly investigate the conventional resource allocation and interference cancellation scheme between Macro and Femto cells. So we found that cell throughput and frequency reuse ware decreased Then, we propose an adaptive resource allocation scheme based on the distribution of Femtocell traffic in order to increase the cell throughput and also maximize the spectral efficiency over the FFR (Fractional Frequency Reuse) based conventional resource allocation schemes. Simulation Results show that the proposed scheme attains a bit similar SINR (Signal to Interference Noise Ratio) distribution but achieves much higher total cell throughput performance distribution over the conventional resource allocation schemes for FFR and future IEEE 802.16m based Femtocell network environment.

Inter-cell Interference Coordination Method Based on Active Antenna System in Heterogeneous Networks (이종망 환경에서 능동 안테나 시스템 기반의 셀간 간섭 제어 방법)

  • Kim, Byoung-June;Park, Haesung;Kim, Duk Kyung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39A no.9
    • /
    • pp.548-556
    • /
    • 2014
  • To cope with recently increasing demand for data traffics, heterogeneous networks have been actively studied, where small cells are deployed within a macro cell coverage with the same frequency band. To mitigate the interference from the macro cell to small cells, an enhanced Inter-cell Interference Coordination (eICIC) technique has been proposed, where ABS (Almost Blank Subframe) is used in time domain. However, there is a waste of resource since no data is transmitted in a macro-cell in ABS. In this paper, we propose a new interference management method by using a 3D sector beam based on Active Antenna System (AAS), where Genetic Algorithm (GA) is applied to reduce the antenna gain toward a small-cell. With the proposed scheme, the macro-cell and small cells can transmit data at the same time with the AAS antenna pattern generating reduced interference to small cells. The performance of the proposed scheme is evaluated by using an LTE-Advanced system level simulator.

A Study on the Hierarchical Cell Structure for Next Generation Mobile Communication Using HAPS (HAPS를 이용한 차세대 이동 통신용 계층적 셀 구조 연구)

  • Kang Young-Heung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.9B
    • /
    • pp.602-609
    • /
    • 2005
  • In this paper, the performance of HCS (hierarchical cell structure), which consists of macro-cell and micro-cell, has been analyzed by assuming that the cells in HAPS (high altitude plat(on station) are tessellated to provide wide coverage, control the co-channel interference and give the higher spectrum efficiency. Since the outside-cell interference factor is well blown to analyze the effects of interference between cells, the effects of interference from the micro-cells into the macro-cells has been estimated using the factor as a performance estimation of HCS in HAPS. HCS served by HAPS can be realized by permitting the suitable power control and the proper number of users in micro-cell because the interference from the micro-cell into the macro-cell is not a function of the distance between cells but a function of the power control and the number of users.

Performance Analysis of Co- and Cross-tier Device-to-Device Communication Underlaying Macro-small Cell Wireless Networks

  • Li, Tong;Xiao, Zhu;Georges, Hassana Maigary;Luo, Zhinian;Wang, Dong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.4
    • /
    • pp.1481-1500
    • /
    • 2016
  • Device-to-Device (D2D) communication underlaying macro-small cell networks, as one of the promising technologies in the era of 5G, is able to improve spectral efficiency and increase system capacity. In this paper, we model the cross- and co-tier D2D communications in two-tier macro-small cell networks. To avoid the complicated interference for cross-tier D2D, we propose a mode selection scheme with a dedicated resource sharing strategy. For co-tier D2D, we formulate a joint optimization problem of power control and resource reuse with the aim of maximizing the overall outage capacity. To solve this non-convex optimization problem, we devise a heuristic algorithm to obtain a suboptimal solution and reduce the computational complexity. System-level simulations demonstrate the effectiveness of the proposed method, which can provide enhanced system performance and guarantee the quality-of-service (QoS) of all devices in two-tier macro-small cell networks. In addition, our study reveals the high potential of introducing cross- and co-tier D2D in small cell networks: i) cross-tier D2D obtains better performance at low and medium small cell densities than co-tier D2D, and ii) co-tier D2D achieves a steady performance improvement with the increase of small cell density.

Coverage Analysis of WCDMA-based Femto Cells for Data Offloading (데이터 오프로딩을 위한 WCDMA 기반 펨토셀의 커버리지 분석)

  • Ban, Tae Won;Jung, Bang Chul
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.3
    • /
    • pp.556-560
    • /
    • 2013
  • Recently, solutions to accommodate explosively growing mobile data traffic have attracted intensive attentions since the emergence of high-performance smartphones. Spectrum which can be exploited for mobile communications is very limited. Thus, femto cell is considered as an alternative because it can efficiently offload mobile data traffic from macro cells without using additional spectrum. In this paper, we mathematically analyzed the coverage of femto cell when it is deployed in an area where there exists signals from existing macro base stations. Our numerical results indicate that the coverage of femto cell increases as the total power of femto cell increases or the ratio of power allocated to pilot channel increases. However, it is also shown that the coverage of femto cell is very limited despite its high power when interference signals from macro base stations are strong.

A 0.8-V Static RAM Macro Design utilizing Dual-Boosted Cell Bias Technique (이중 승압 셀 바이어스 기법을 이용한 0.8-V Static RAM Macro 설계)

  • Shim, Sang-Won;Jung, Sang-Hoon;Chung, Yeon-Bae
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.1
    • /
    • pp.28-35
    • /
    • 2007
  • In this paper, an ultra low voltage SRAM design method based on dual-boosted cell bias technique is described. For each read/write cycle, the wordline and cell power node of the selected SRAM cells are boosted into two different voltage levels. This enhances SNM(Static Noise Margin) to a sufficient amount without an increase of the cell size, even at sub 1-V supply voltage. It also improves the SRAM circuit speed owing to increase of the cell read-out current. The proposed design technique has been demonstrated through 0.8-V, 32K-byte SRAM macro design in a $0.18-{\mu}m$ CMOS technology. Compared to the conventional cell bias technique, the simulation confirms an 135 % enhancement of the cell SNM and a 31 % faster speed at 0.8-V supply voltage. This prototype chip shows an access time of 23 ns and a power dissipation of $125\;{\mu}W/Hz$.

Beamforming Strategy Using Adaptive Beam Patterns and Power Control for Common Control Channel in Hierarchical Cell Structure Networks

  • You, Cheol-Woo;Jung, Young-Ho;Cho, Sung-Hyun
    • Journal of Communications and Networks
    • /
    • v.13 no.4
    • /
    • pp.319-326
    • /
    • 2011
  • Beamforming techniques have been successfully utilized for traffic channels in order to solve the interference problem. However, their use for control channels has not been sufficiently investigated. In this paper, a (semi-) centralized beamforming strategy that adaptively changes beam patterns and controls the total transmit power of cells is proposed for the performance enhancement of the common channel in hierarchical cell structure (HCS) networks. In addition, some examples of its practical implementation with low complexity are presented for two-tier HCS networks consisting of macro and pico cells. The performance of the proposed scheme has been evaluated through multi-cell system-level simulations under optimistic and pessimistic interference scenarios. The cumulative distribution function of user geometry or channel quality has been used as a performance metric since in the case of common control channel the number of outage users is more important than the sum rate. Simulation results confirm that the proposed scheme provides a significant gain compared to the random beamforming scheme as well as conventional systems that do not use the proposed algorithm. Finally, the proposed scheme can be applied simultaneously to several adjacent macro and pico cells even if it is designed primarily for the pico cell within macro cells.

High Efficacy Plasma Display Utilizing Macro Discharge Cell Structure with Long Electrodes Gap (Long Electrode Gap을 가진 Macro Cell에서의 고효율 PDP 특성 연구)

  • Kim, Min-Tae;Heo, Jun;Kim, Yun-Gi;Kim, Dong-Hyun;Lee, Hea-June;Lee, Ho-Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.9
    • /
    • pp.1314-1318
    • /
    • 2012
  • Recently, applications of plasma display to the large public display and transparent display gain much attention. With this background, we report characteristics of opposite electrodes discharge cell with long electrode gap in comparison with conventional co-planar surface discharge. The cell size of test panel is $2950{\mu}m{\times}840{\mu}m$, which corresponds to that of the display having diagonal size of 130" with XGA resolution. Electrode gap of co-planar and opposite electrode structure are $240{\mu}m$ and $500{\mu}m$ respectively. These gap dimensions provide similar driving voltage windows. Experimental results show that opposite discharge provides approximately four fold higher luminous efficacy compared with that of the surface discharge. Resulting efficacy is found to be higher than 19 lm/W in green phosphor with 10 KHz continuous pulse operation.

Handover Procedures and Analysis for Mobile IP in Macro cell (Macro cell에서 Mobile IP를 고려한 Handover 과정 및 분석)

  • 홍성화;노재성;정해원;조성준
    • Proceedings of the IEEK Conference
    • /
    • 2001.06a
    • /
    • pp.277-280
    • /
    • 2001
  • Due to the explosive popularization of the Internet, it has been researched for many mobile terminals how to receive various multimedia information. Especially, it has been considered that a mobile terminal is serviced with multimedia information through a inherent IP address. In this paper we have proposed the Handover Signaling Method and analyzed the Handover delay time of this proposed method in wireless section. This proposed method is appropriate to Broadband systems with Mobile IP. We have simulated Handover delay time with respect to the distance between a terminal and base stations

  • PDF