• Title/Summary/Keyword: Macro Interface

Search Result 83, Processing Time 0.027 seconds

Effect of Groove Shapes on Mechanical Properties of STS316L Repaired by Direct Energy Deposition (직접 에너지 적층을 통한 STS316L 소재의 보수 공정에서 그루브 형상이 기계적 특성에 미치는 효과)

  • Oh, W.J.;Son, Y.;Son, J.Y.;Shin, G.W.;Shim, D.S.
    • Transactions of Materials Processing
    • /
    • v.29 no.2
    • /
    • pp.103-112
    • /
    • 2020
  • This study explores the effects of different pre-machining conditions on the deposition characteristics and mechanical properties of austenitic stainless steel samples repaired using direct energy deposition (DED). In the DED repair process, defects such as pores and cracks can occur at the interface between the substrate and deposited material. In this study, we varied the shape of the pre-machined zone for repair in order to prevent cracks from occurring at the slope surface. After repairs by the DED process, macro-scale cracks were observed in samples that had been pre-machined with elliptic and trapezoidal grooves. In addition, it was not possible to completely prevent micro-crack generation on the sloped interfaces, even in the capsule-type grooved sample. From observation of the fracture surfaces, it was found that the cracks around the inclined interface were due to a lack of fusion between the substrate and the powder material, which led to low tensile properties. The specimen with the capsule-type groove provided the highest tensile strength and elongation (respective of 46% and 571% compared to the trapezoidal grooved specimen). However, the tensile properties were degraded compared to the non-repaired specimen (as-hot rolled material). The fracture characteristics of the repaired specimens were determined by the cracks at the sloped interfaces. These cracks grew and coalesced with each other to form macro-cracks, they then coalesced with other cracks and propagated to the substrate, causing final fracture.

Change in the Interface between "Place of Work" and "Place of Living" during the Modernization of the Korean Home and its Spatial Characteristics - The Case Study of Transitional Type in Seoul, 1920's~1940's - (한국 근대주거에서 나타나는 직주(職住)관계 변화 및 직주일치(職住一致) 주거공간의 특성 - 1920~1940년대 서울의 사례를 중심으로 -)

  • Jun, Nam-Il
    • Journal of the Korean housing association
    • /
    • v.20 no.5
    • /
    • pp.61-72
    • /
    • 2009
  • The purpose of this study was to examine how the interface between "place of work" and "place of living" in the housing sphere has changed, and to understand its social background. During the korean modernization period, changes in economic structure toward industry has an influence on many aspects of modem life in addition to occupations. The traditional mixing of heterogeneous activities in the home-such as between reproduction and household affairs, first changed into a coexistence of two spaces with different functions within the boundaries of home, and finally into a spatial separation between functions in an urban dimension. As a result of this process, the primary role of the modem home is as a place for relaxation without work. One important kind of home, in which a retail shop is integrated with it, was researched as a transitional form. Its spatial layout showed a various combined usage of both spaces. In conclusion, changes in relevant macro-social aspects are very concretely reflected m the function and spatial organization of the home.

Optimization of Friction Welding for Motor Vehicle Safety Belts: Part 1-Mechanical Properties and Microstructure (수송차량 안전벨트용 모터축재의 마찰용접 최적화(1) - 기계적 특성 및 조직)

  • Kong, Yu-Sik;Ahn, Seok-Hwn
    • Journal of Ocean Engineering and Technology
    • /
    • v.26 no.1
    • /
    • pp.64-69
    • /
    • 2012
  • Dissimilar friction welds were produced using 15-mm diameter solid bars of chrome molybdenum steel (KS SCM440) and carbon steel (KS SM20C) to investigate their mechanical properties. The main friction welding parameters were selected to ensure good quality welds on the basis of visual examination, tensile tests, Vickers hardness surveys of the bond area and HAZ, and macro-structure investigations. The specimens were tested as-welded and post-weld heat treated (PWHT). The tensile strength of the friction welded steel bars was increased to 100% of the SM20C base metal under the condition of a heating time of more than four seconds. Optimal welding conditions were n = 2,000 (rpm), HP = 60 (MPa), UP = 100 (MPa), HT = 5 (s),and UT = 5 (s), when the total upset length was 7.8 (mm). The hardness distribution peak of the friction welded joints could be eliminated using PWHT. The two different kinds of materials were strongly mixed to show a well-combined structure of macro-particles, with no molten material, particle growth, or defects.

Fracture Behavior of $Al_2O_3$ Macro-composites with Layered and Fibrous Structure (층상 및 섬유상 $Al_2O_3$ 거시복합체의 파괴거동)

  • 신동우;윤대현;박삼식;김해두
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.7
    • /
    • pp.758-766
    • /
    • 1997
  • Non-brittle fracture behaviour of the two composite structures made of two different brittle materials was investigated using 3-point bending test. First, the layered and fibrous macro-composites were fabricated using the material easily formed, yet showing a brittle fracture behaviour similar to ceramics. The layered and fibrous Al2O3 /Al2O3 composites with weak interface were also fabricated using plate of 2 mm thickness and rod of 3 mm diameter respectively. Comparison of the mechanical properties between these two structures was performed in the lights of flexural strength and work of fracture for the composites consisting of Al2O3 and simulated materials respectively. The strength ratio of layered structure to the monolith of same volume was 0.6 and the ratio of fibrous one was about 0.2 for the composites made of simulated brittle material. The ratio of the work of fracture of the fibrous to the layered was 0.47. For Al2O3/Al2O3 composites, the strength ratio of layered and fibrous structures to the monolith with same volume were about 0.6 and 0.2 respectively. The ratio of work of fracture of the fibrous to the layered was 0.6. These confirmed that the layered structure was superior to the fibrous one in terms of flexural strength and work of fracture.

  • PDF

Experimental investigation of natural bond behavior in circular CFTs

  • Naghipour, Morteza;Khalili, Aidin;Hasani, Seyed Mohammad Reza;Nematzadeh, Mahdi
    • Steel and Composite Structures
    • /
    • v.42 no.2
    • /
    • pp.191-207
    • /
    • 2022
  • Undoubtedly, the employment of direct bond interaction between steel and concrete is preceding the other mechanisms because of its ease of construction. However, the large scatter in the experimental data about the issue has hindered the efforts to characterize bond strength. In the following research, the direct bond interaction and bond-slip behavior of CFTs with circular cross-section were examined through repeated load-reversed push-out tests until four cycles of loading. The influence of different parameters including the diameter of the tube and the use of shear tabs were assessed. Moreover, the utilization of expansive concrete and external spirals was proposed and tested as ways of improving bond strength. According to the results section dimensions, tube slenderness, shrinkage potential of concrete, interface roughness and confinement are key factors in a natural bond. Larger diameters will lead to a considerable drop in bond strength. The use of shear tabs by their associated bending moments increases the bond stress up to eight times. Furthermore, employment of external spirals and expansive concrete have a sensible effect on enhancing bonds. Macro-locking was also found to be the main component in achieving bond strength.

In situ Synchrotron X-ray Techniques for Structural Investigation of Electrode Materials for Li-ion Battery (방사광 X-선을 이용한 리튬이온전지 소재의 실시간 구조 분석 연구)

  • Han, Daseul;Nam, Kyung-Wan
    • Ceramist
    • /
    • v.22 no.4
    • /
    • pp.402-416
    • /
    • 2019
  • The development of next-generation secondary batteries, including lithium-ion batteries (LIB), requires performance enhancements such as high energy/high power density, low cost, long life, and excellent safety. The discovery of new materials with such requirements is a challenging and time-consuming process with great difficulty. To pursue this challenging endeavor, it is pivotal to understand the structure and interface of electrode materials in a multiscale level at the atomic, molecular, macro-scale during charging / discharging. In this regard, various advanced material characterization tools, including the first-principle calculation, high-resolution electron microscopy, and synchrotron-based X-ray techniques, have been actively employed to understand the charge storage- and degradation-mechanisms of various electrode materials. In this article, we introduce and review recent advances in in-situ synchrotron-based x-ray techniques to study electrode materials for LIBs during thermal degradation and charging/discharging. We show that the fundamental understanding of the structure and interface of the battery materials gained through these advanced in-situ investigations provides valuable insight into designing next-generation electrode materials with significantly improved performance in terms of high energy/high power density, low cost, long life, and excellent safety.

Mechanical Properties of the Flash Butt Welded Joint of 590MPa High Strength Steel (590MPa급 고강도강 플래시버트 용접이음부의 기계적특성)

  • Jeong, Bo-Young;Woo, In-Su;Kim, Jeong-Kil;Lee, Jong-Bong
    • Journal of Welding and Joining
    • /
    • v.25 no.2
    • /
    • pp.55-61
    • /
    • 2007
  • Flash butt weldability of 590MPa dual phase steel is carried out under micro metallographical examination and macro mechanical property tests. The objective of present study is to investigate the cause that brings on bond line fracture, and is to improve mechanical properties of the flash butt welded joint. The joint of flash butt welding has a superior tensile property, but has bad formability due to oxide formed at bond interface. The HAZ softening in the weld joint does not show. It was found that mechanical properties were increased with optimizing welding parameters and making application of oil dripping and post-weld heat treatment.

Mesoscopic study on historic masonry

  • Sejnoha, J.;Sejnoha, M.;Zeman, J.;Sykora, J.;Vorel, J.
    • Structural Engineering and Mechanics
    • /
    • v.30 no.1
    • /
    • pp.99-117
    • /
    • 2008
  • This paper presents a comprehensive approach to the evaluation of macroscopic material parameters for natural stone and quarry masonry. To that end, a reliable non-linear material model on a meso-scale is developed to cover the random arrangement of stone blocks and quasi-brittle behaviour of both basic components, as well as the impaired cohesion and tensile strength on the interface between the blocks and mortar joints. The paper thus interrelates the following three problems: (i) definition of a suitable periodic unit cell (PUC) representing a particular masonry structure; (ii) derivation of material parameters of individual constituents either experimentally or running a mixed numerical-experimental problem; (iii) assessment of the macroscopic material parameters including the tensile and compressive strengths and fracture energy.

An Integrated System for Macromodel Development (마크로모델 개발을 위한 통합 시스템)

  • 박진규;정의영;김경호
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.31A no.9
    • /
    • pp.146-155
    • /
    • 1994
  • In this paper, we desribe a new system, called BEST, that is used to develop a macromodel or behavioral model easily. It automatically calculates the component values of macromodel represented by equations to satisfy the given specification. Also, it gives the way to analyze both the behavioral model and transistor level circuit, and then compare the analysis results of them to check the correspondence under specific temperature and bias condition, and BEST optimizes the component values of macromodel. Other feature is to characterize MOSFET as switch model which consists of PWL-RC network. Finally, it is possible to generage multi-level netlist which consists of macro/switch/transistor level circuits, and user can determine the trade-off between simulation speed and accuracy. With the graphic user interface form of macromodel development system described above. BEST enable designers to make macromodel by themselves and to uas it. We applied BEST to develop the macromodel for the test circuit and got the 18.6 times simulation speed up with preserving the accuracy within 10% compared to the conventional transistor level circuit simulation. Also, applicability of optimization capability was verified.

  • PDF

SATS: Structure-Aware Touch-Based Scrolling

  • Kim, Dohyung;Gweon, Gahgene;Lee, Geehyuk
    • ETRI Journal
    • /
    • v.38 no.6
    • /
    • pp.1104-1113
    • /
    • 2016
  • Non-linear document navigation refers to the process of repeatedly reading a document at different levels to provide an overview, including selective reading to search for useful information within a document under time constraints. Currently, this function is not supported well by small-screen tablets. In this study, we propose the concept of structure-aware touch-based scrolling (SATS), which allows structural document navigation using region-dependent touch gestures for non-sequential navigation within tablets or tablet-sized e-book readers. In SATS, the screen is divided into four vertical sections representing the different structural levels of a document, where dragging into the different sections allows navigating from the macro to micro levels. The implementation of a prototype is presented, as well as details of a comparative evaluation using typical non-sequential navigation tasks performed under time constraints. The results showed that SATS obtained better performance, higher user satisfaction, and a lower usability workload compared with a conventional structural overview interface.