DOI QR코드

DOI QR Code

In situ Synchrotron X-ray Techniques for Structural Investigation of Electrode Materials for Li-ion Battery

방사광 X-선을 이용한 리튬이온전지 소재의 실시간 구조 분석 연구

  • Han, Daseul (Department of Energy and Materials Engineering, Dongguk University) ;
  • Nam, Kyung-Wan (Department of Energy and Materials Engineering, Dongguk University)
  • 한다슬 (동국대학교 융합에너지신소재공학과) ;
  • 남경완 (동국대학교 융합에너지신소재공학과)
  • Received : 2019.12.16
  • Accepted : 2019.12.20
  • Published : 2019.12.31

Abstract

The development of next-generation secondary batteries, including lithium-ion batteries (LIB), requires performance enhancements such as high energy/high power density, low cost, long life, and excellent safety. The discovery of new materials with such requirements is a challenging and time-consuming process with great difficulty. To pursue this challenging endeavor, it is pivotal to understand the structure and interface of electrode materials in a multiscale level at the atomic, molecular, macro-scale during charging / discharging. In this regard, various advanced material characterization tools, including the first-principle calculation, high-resolution electron microscopy, and synchrotron-based X-ray techniques, have been actively employed to understand the charge storage- and degradation-mechanisms of various electrode materials. In this article, we introduce and review recent advances in in-situ synchrotron-based x-ray techniques to study electrode materials for LIBs during thermal degradation and charging/discharging. We show that the fundamental understanding of the structure and interface of the battery materials gained through these advanced in-situ investigations provides valuable insight into designing next-generation electrode materials with significantly improved performance in terms of high energy/high power density, low cost, long life, and excellent safety.

Keywords

References

  1. Chen, R., Luo, R., Huang, Y., Wu, F. & Li, L. Advanced High Energy Density Secondary Batteries with Multi-Electron Reaction Materials. Adv. Sci. 3, 1600051-1600090 (2016). https://doi.org/10.1002/advs.201600051
  2. Goodenough, J. B. & Kim, Y. Challenges for Rechargeable Li Batteries${\dagger}$. Chemistry of Materials 22, 587-603 (2010). https://doi.org/10.1021/cm901452z
  3. Tarascon, J. M. Key challenges in future Li-battery research. Philos Trans A Math Phys Eng Sci 368, 3227-3241 (2010).
  4. Bak, S.-M., Shadike, Z., Lin, R., Yu, X. & Yang, X.-Q. In situ/operando synchrotron-based X-ray techniques for lithium-ion battery research. NPG Asia Materials 10, 563-580 (2018). https://doi.org/10.1038/s41427-018-0056-z
  5. Powder Diffraction-Theory and practice. (2008).
  6. Bob B. He, U. P., and Kingsley L. Smith. COMPARISON BETWEEN CONVENTIONAL AND TWO DIMENSIONAL XRD. Advances in X-ray Analysis 46, 37-42 (2003).
  7. Bail, L., H.Duroy & J.L.Fourquet. Ab-initio structure determination of $LiSbWO_6$ by X-ray powder diffraction. Mat. Res. Bull. 23, 447-452 (1988). https://doi.org/10.1016/0025-5408(88)90019-0
  8. Calvin, S. XAFS for Everyone. CRCPress (2013).
  9. Newville, M. Fundamentals of XAFS. (2004).
  10. Yang, Z., Trahey, L., Ren, Y., Chan, M. K. Y., Lin, C., Okasinski, J. & Thackeray, M. M. In situ high-energy synchrotron X-ray diffraction studies and first principles modeling of ${\alpha}-MnO_2$ electrodes in Li-$O_2$ and Li-ion coin cells. Journal of Materials Chemistry A 3, 7389-7398 (2015). https://doi.org/10.1039/C4TA06633B
  11. Zheng, Y., Song, K., Jung, J., Li, C., Heo, Y.-U., Park, M.-S., Cho, M., Kang, Y.-M. & Cho, K. Critical Descriptor for the Rational Design of Oxide-Based Catalysts in Rechargeable Li-$O_2$Batteries: Surface Oxygen Density. Chemistry of Materials 27, 3243-3249 (2015). https://doi.org/10.1021/acs.chemmater.5b00056
  12. Pervez, S. A., Cambaz, M. A., Thangadurai, V. & Fichtner, M. Interface in Solid-State Lithium Battery: Challenges, Progress, and Outlook. ACS Appl Mater Interfaces 11, 22029-22050 (2019). https://doi.org/10.1021/acsami.9b02675
  13. Nam, K.-W., Bak, S.-M., Hu, E., Yu, X., Zhou, Y., Wang, X., Wu, L., Zhu, Y., Chung, K.-Y. & Yang, X.-Q. Combining In Situ Synchrotron X-Ray Diffraction and Absorption Techniques with Transmission Electron Microscopy to Study the Origin of Thermal Instability in Overcharged Cathode Materials for Lithium-Ion Batteries. Advanced Functional Materials 23, 1047-1063 (2013). https://doi.org/10.1002/adfm.201200693
  14. Liu, H., Allan, P. K., Borkiewicz, O. J., Kurtz, C., Grey, C. P., Chapman, K. W. & Chupas, P. J. A radially accessible tubular in situ X-ray cell for spatially resolved operando scattering and spectroscopic studies of electrochemical energy storage devices. Journal of Applied Crystallography 49, 1665-1673 (2016). https://doi.org/10.1107/S1600576716012632
  15. Hu, E., Bak, S. M., Senanayake, S. D., Yang, X.-Q., Nam, K.-W., Zhang, L. & Shao, M. Thermal stability in the blended lithium manganese oxide - Lithium nickel cobalt manganese oxide cathode materials: An in situ time-resolved X-Ray diffraction and mass spectroscopy study. Journal of Power Sources 277, 193-197 (2015). https://doi.org/10.1016/j.jpowsour.2014.12.015
  16. Bak, S.-M., Nam, K.-W., Chang, W., Yu, X., Hu, E., Hwang, S., Stach, E. A., Kim, K.-B., Chung, K. Y. & Yang, X.-Q. Correlating Structural Changes and Gas Evolution during the Thermal Decomposition of Charged LixNi0.8Co0.15Al0.05O2 Cathode Materials. Chemistry of Materials 25, 337-351 (2013). https://doi.org/10.1021/cm303096e
  17. Bak, S. M., Hu, E., Zhou, Y., Yu, X., Senanayake, S. D., Cho, S. J., Kim, K. B., Chung, K. Y., Yang, X. Q. & Nam, K. W. Structural changes and thermal stability of charged LiNixMnyCozO(2) cathode materials studied by combined in situ time-resolved XRD and mass spectroscopy. ACS Appl. Mater. Interfaces 6, 22594-22601 (2014). https://doi.org/10.1021/am506712c
  18. Hu, E., Bak, S.-M., Liu, J., Yu, X., Zhou, Y., Ehrlich, S. N., Yang, X.-Q. & Nam, K.-W. Oxygen-Release-Related Thermal Stability and Decomposition Pathways of $LixNi_{0.5}Mn_{1.5}O_4$ Cathode Materials. Chemistry of Materials 26, 1108-1118 (2013). https://doi.org/10.1021/cm403400y
  19. Yoon, W. S., Haas, O., Muhammad, S., Kim, H., Lee, W., Kim, D., Fischer, D. A., Jaye, C., Yang, X. Q., Balasubramanian, M. & Nam, K. W. In situ soft XAS study on nickel-based layered cathode material at elevated temperatures: a novel approach to study thermal stability. Scientific Reports 4, 6827-6832 (2014). https://doi.org/10.1038/srep06827
  20. Yu, X., Lyu, Y., Gu, L., Wu, H., Bak, S.-M., Zhou, Y., Amine, K., Ehrlich, S. N., Li, H., Nam, K.-W. & Yang, X.-Q. Understanding the Rate Capability of High-Energy-Density Li-Rich Layered $Li_{1.2}Ni_{0.15}Co_{0.1}Mn_{0.55}O_2$ Cathode Materials. Advanced Energy Materials 4, 1300950-1300961 (2014). https://doi.org/10.1002/aenm.201300950
  21. Zhou, Y.-N., Yue, J.-L., Hu, E., Li, H., Gu, L., Nam, K.-W., Bak, S.-M., Yu, X., Liu, J., Bai, J., Dooryhee, E., Fu, Z.-W. & Yang, X.-Q. High-Rate Charging Induced Intermediate Phases and Structural Changes of Layer-Structured Cathode for Lithium-Ion Batteries. Advanced Energy Materials 6, 1600597-1600605 (2016). https://doi.org/10.1002/aenm.201600597
  22. Reddy, M. V., Subba Rao, G. V. & Chowdari, B. V. Metal oxides and oxysalts as anode materials for Li ion batteries. Chem. Rev. 113, 5364-5457 (2013). https://doi.org/10.1021/cr3001884
  23. Shon, J. K., Lee, H. S., Park, G. O., Yoon, J., Park, E., Park, G. S., Kong, S. S., Jin, M., Choi, J. M., Chang, H., Doo, S., Kim, J. M., Yoon, W. S., Pak, C., Kim, H. & Stucky, G. D. Discovery of abnormal lithium-storage sites in molybdenum dioxide electrodes. Nat. Commun. 7, 11049-11058 (2016). https://doi.org/10.1038/ncomms11049
  24. Hu, Y. Y., Liu, Z., Nam, K. W., Borkiewicz, O. J., Cheng, J., Hua, X., Dunstan, M. T., Yu, X., Wiaderek, K. M., Du, L. S., Chapman, K. W., Chupas, P. J., Yang, X. Q. & Grey, C. P. Origin of additional capacities in metal oxide lithium-ion battery electrodes. Nature Materials 12, 1130-1136 (2013). https://doi.org/10.1038/nmat3784

Cited by

  1. Review of High Performance Aqueous Rechargeable Batteries Based on Layered Double Hydroxide vol.24, pp.1, 2021, https://doi.org/10.31613/ceramist.2021.24.1.02