• Title/Summary/Keyword: Machining mechanism

Search Result 286, Processing Time 0.028 seconds

A Study on Micro-hole Machining Technology using Ultrasonic vibration (초음파 진동을 이용한 미세구멍 가공기술)

  • 이석우;최헌종;이봉구;최영재
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.231-234
    • /
    • 2002
  • Ultrasonic machining technology has been developed over recent years for the manufacture of cost-effective and quality-assured precision parts for several industrial application such as optics, semiconductors, aerospace, and automobile. Ultrasonic machining process is an efficient and economical means of precision machining of ceramic materials. The process is non-thermal, non-chemical and non-electric and hardly creates changes to the mechanical properties of the brittle materials machined. This paper describes the characteristics of the micro-hole of $\textrm{Al}_2\textrm{O}_3$ by ultrasonic machining with tungsten carbide tool. The effects of various parameters of ultrasonic machining, including abrasives, machining force and pressure, on the material removal rate, hole quality, and tool wear presented and discussed. The ultrasonic Machining of micro-holes in ceramics has been under taken and the machining mechanism in the ultrasonic machining of ceramics based on the fracture-mechanics concept has been analyzed.

  • PDF

5-Axis CNC Machining of Roller Gear Cam (롤러 기어 캠의 5-축 CNC 가공)

  • Cho, Hyun-Deog;Yoon, Moon-Chul;Kim, Kyung-Jin
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.6
    • /
    • pp.739-745
    • /
    • 2010
  • The roller gear cam can control the rotational follower periodically by attaching several roller on the circumstance of follower shaft and it is widely used in non-backlash and precise actuating mechanism such as index table or ATC of machine tools. For machining the roller gear cam, 5 axis CNC machine tool is used and the geometric principle of CAM mechanism must be adopted to generate the NC-code and to develop the special CAD/CAM software because there is not commercial CAM system to machine the roller gear cam. The maker of the specially developed software in domestic user is generally from Japan or Taiwan. However these softwares do not reflect the post processing technique for finish machining in the module. Also, there is some limitation for further new application of itself and it needs higher costs for further application. In this study, the CAD/CAM software to overcome these problem was developed. And its reliability was verified by applying it in 5-axis CNC machining. Finally, the experimental result conducted in the 5-axis machining show good consistency in the movement of follower along the flute and in its Size.

Study on the effects of endmill's shape on the machinabitity and the cutting time (엔드밀의 형상이 가공특성 및 절삭시간에 미치는 영향에 관한 연구)

  • 김병희;주종남
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.10a
    • /
    • pp.52-57
    • /
    • 1993
  • In this study, the inclined endmilling process with a 3-axis machining center using inalined jigs is introduced for the purpose of reducing overall Dies/Molds machining time and improving the machining accuracies. In order to analyse the cutting mechanism of a given endmill more accurateky, the unification of the cutting mechanism model of 3-different-kind endmills is examined by using the mose radius as a parameter. By adding radial runouts as a parameter which influences on surface roughness, the superposition method which defines the effective cusp heigh superposing the cutter mark height and the conventional cusp height is modified. And 3-D surface topography predicted in this paper looks like the surface normally observed in practice. Through machining experiments, the adequacy of the superposition algorithm was confirmed.

  • PDF

Monitoring of tool conditions in high-speed machining of die material (금형강의 고속가공시 공구상태의 감시)

  • Hur, Hyun;Lee, Ki-Young;Jeong, Yung-Ho;Lee, Deug-Woo;Kim, Jeong-Suk;Hwang, Kyung-Hyun
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.131-134
    • /
    • 1995
  • The high efficiency and accuracy in machining the die material can be abtained in high speed machining, so it is necessary to analyze the mechanism of high speed cutting process : cutting force, flank wear. The tool dynomometer with high natural frequency is newly developed. With this device, the mechanism of high speed cutting process is investigated according to speed and feedate.

  • PDF

A Study on the Environmentally Conscious Machining Technology Cutting Fluid Atomization and Environmental Impact through Spin-Off Mechanism in fuming Operation(1) (환경 친화적 기계가공 기술에 관한 연구 선삭가공시 회전분리기구에 의한 절삭유 미립화와 환경영향(I))

  • Hwang, Joon;Chung, Eui-Sik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.3
    • /
    • pp.73-79
    • /
    • 2002
  • This paper presents the experimental results to verify the environmental consciousness with economic balances due to cutting fluid behaviors, effectiveness in machining process. Even though cutting fluid improves the Productivity through the cooling, lubricating effects, its environmental impact is also increased according to the cutting fluid usage. The primary mechanism considered in this study is the spin-off motion of fluids away from rotating workpiece. In this study some parameters arc adopted to analyze the productivity(tool wear), environmental impact(mist diffusion rate). The results present talc criteria for the resonable cutting fluid usage quantitative1y to develop the environmentally conscious machining process.

Transition Mechanism from Brittle Fracture to Ductile Shear when Machining Brittle Materials with an Abrasive Waterjet

  • Huang, Chuanzhen;Zhu, Hongtao;Lu, Xinyu;Li, Quanlai;Che, Cuilian
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.9 no.2
    • /
    • pp.11-17
    • /
    • 2008
  • Critical erosion kinetic energy models for radial/median cracks and lateral cracks in a workpiece are established in this study. We used experimental results to demonstrate that the fracture erosion resistance and erosion machining number could be used to evaluate the brittle fracture resistance and machinability of a workpiece. Erosion kinetic energy models were developed to predict brittle fracture and ductile shear, and a critical erosion kinetic energy model was developed to predict the transition from brittle fracture to ductile shear. These models were verified experimentally.

An Ultraprecise Machining System with a Hexapod Device to Measure Six-Degree-Of-Freedom Relative Motions Between The Tool And Workpiece

  • Oiwa, Takaaki
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.8 no.2
    • /
    • pp.3-8
    • /
    • 2007
  • A machining system that generates accurate relative motions between the tool and workpiece is required to realize ultra precise machining or measurements. Accuracy improvements for each element of the machine are also required. This paper proposes a machining system that uses a compensation device for the six-degree-of-freedom (6-DOF) motion error between the tool and workpiece. The compensation device eliminates elastic and thermal errors of the joints and links due to temperature fluctuations and external forces. A hexapod parallel kinematics mechanism installed between the tool spindle and surface plate is passively actuated by a conventional machine. Then the parallel mechanism measures the 6-DOF motions. We describe the conception and fundamentals of the system and test a passively extensible strut with a compensation device for the joint errors.

Determination of the Cutting Condition in High Speed-Machining Considering the Machining Efficiency (볼 엔드밀의 고속가공에서 가공능률을 고려한 가공조건의 선정)

  • 손창수;강명창;이득우;황경현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.965-969
    • /
    • 1997
  • Due to the high feed rate,high speed machining (HSM) provide a great potential of rationalization for the machining Dies and Moulds. But determination of cutting condition is very difficult, because cutting mechanism of high speed machining is very complicated,especially using ball end-mill. This paoer gives a report on selection of the optimal cutting condition to improve the machining efficiency, And optimal machining condition is determined through the cutting force, FFT analysis of cutting force and surface roughness according to the cutting condition. Based on this experiment result,wear process and machining characteristics are evaluated.

  • PDF

A Study on Machining Information Analysis of Disk Cam using Circular Interpolation (원호보간법을 이용한 평면 캠 가공 정보 분석에 관한 연구)

  • Cho, I.Y.;Kim B.J.;Kim J.C.;Shin J.H.;Kwon S.M.;Woo J.Y.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1678-1681
    • /
    • 2005
  • The disk cam mechanism cam produce a positive motion with a relatively few components. In the present paper a shape design of cam using the relative velocity method and the machining information analysis using the circular interpolation are introduced. In the first part of the paper a machining information at each point using the circular interpolation is taken. This study purposes the analysis method of the cutting error due to the moving path of the cutter, so that we can lead to the optimum design in a disk cam mechanism..

  • PDF

Review of Technology Trends for Ceramics Removal-Machining (세라믹스의 제거가공 기술 동향)

  • Kwak, Jae-Seob;Kwak, Tae-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.12
    • /
    • pp.1227-1235
    • /
    • 2013
  • Ceramic materials are classified by oxide, nitride and carbide material and have high brittleness, strength and hardness. Ceramic materials are strong in compression but weak in shearing and tension. This review paper has focused on technology trends and mechanism analysis of ceramics removal machining. The ceramic materials have superior mechanical, physical and chemical properties, but it is very hard to machining and the use of ceramics has been limited because of high strength and brittleness. In this paper, technology trends of ceramic removal-machining was introduced for types of machining technology, abrasive machining, cutting process, laser machining and so on.