• Title/Summary/Keyword: Machining System

Search Result 1,494, Processing Time 0.032 seconds

Hot Forging Analysis of Rotor Grip with Titanium Alloy for Unmanned Helicopter (무인헬기용 티타늄 합금 로터 그립의 열간성형해석)

  • Lee, Seong-Chul;Kong, Jae-Hyun;Hur, Kwan-Do
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.2
    • /
    • pp.96-103
    • /
    • 2011
  • Rotor grip is used as a component of rotor system in unmanned helicopter. Instead of usual machining, hot forging process has been considered to improve its proof stress against repeated loading conditions and crash in the farm-field. Die design and forming analysis have been performed according to the conditions such as billet volume, flash, cavity filling, and the distribution of damage during the forming by using FE analysis. In the results of analysis, the possibility of structural failure in the model has not been found because its maximum effective stress is much lower than yield strength of the titanium alloy. In the forging die design, flash has been allowed because of low production in the industrial field. Preform design was studied by using FE-analysis, and its optimal dimension was obtained in the hot forging of rotor grip with titanium alloy.

A Study on the Development of Progressive Die for Cutoff Type U-Bending Process

  • Sim, Sung-Bo;Lee, Sung-Taeg;Jang, Chan-Ho
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.347-352
    • /
    • 2002
  • The Cut off-type progressive die for U-bending production part is a very specific division. This study reveals the sheet metal forming process with multi-forming die by Center Carrier type feeding system. Through the FEM simulation by DEFORM, it was accepted to u-bending process as the first performance to design of strip process layout. The next process of die development was studied according to sequence of die development, i.e. die structure, machining condition for die making, die materials, heat treatment of die components, know-how and so on. The feature of this study is the die development of scrapless progressive die of multi-stage through the Modeling on the I-DEAS program, components drawing on the Auto-Lisp, CAD/CAM application, ordinary machine tool operating and revision by tryout.

  • PDF

원격운용 초고속 HMC 개발

  • Kim, Gi-Tae;Choi, Jae-Woo;Joo, Hyeok
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.456-461
    • /
    • 2002
  • Nowadays, there are required more speed and accurate machining in order to improve the productivity through the reduction of cutting and non-cutting time. In this study, the high-speed HMC is specially designed to do remote control and high-speed mechanism with 30000rpm, 50000rpm, 40m/min, 100m/min and bridge type structure. Every structural deformation and vibration that is generated from all of factor is analyzed being based on the virtual manufacturing technologies: thermal characteristic analysis, machine-ability, tool wear measuring system, driving characteristic of linear motor and so on. As the application of these results had been consisted of three axes to move slight and rigid finally. Therefore, table errors that are resulted in change of work weight can be removed.

  • PDF

Speed Sensorless Torque Monitoring Of Induction Spindle Motor On Machine Tool (공작기계 주축 유도전동기의 속도 센서리스 토크 감시)

  • 홍익준;권원태
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.18-23
    • /
    • 2002
  • In this paper, The torque of CNC spindle motor during machining is estimated without speed measuring sensor. The CNC spindle system is divided into two parts, the induction spindle motor part and mechanical part. In mechanical part the variation of the frictional force due to the increment of the cutting torque and the effect of damping coefficient is investigated. Damping coefficient is found to be a function of spindle speed and not influenced by the weight of the load, while frictional force is a function of both the cutting torque and spindle speed. Experimental formulars are drawn for damping coefficient as a function of spindle speed and frictional force as a function of both cutting torque and spindle speed respectively, to estimate the cutting torque accurately. Graphical programming is used to implement the suggested algorithm, to monitor the torque of an induction motor in real time. Torque of the spindle induction motor is well monitored with 3% error range under various cutting conditions.

  • PDF

Research for Patent Application Tendency in the Super Fine Machining System Using the Wet Waterjet (습식워터젯을 채용한 초정밀 절삭 가공시스템의 특허동향조사에 관한 연구)

  • Kim, Sung-Min;Ko, Jun-Bin;Park, Hee-Sang
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.18 no.1
    • /
    • pp.1-12
    • /
    • 2009
  • Presently, the semiconductor industry has the chronic problem. In the semiconductor industry, it has the semiconductor wafer, a package, the optical filter cut by using the saw blade, the mold, a laser etc. The cutting technique has the difficulty due to the rising of the production cost by the wearing of mold, the poor quality problem due to generated heat at the moment of cutting procedure and curve cutting etc. The goal of this time of national research and development project is develop the apparatus for solving the problem that the existing cutting technique has. The technology is so called waterjet abrasive method. This technology will be mainly applied to cut a semiconductor package and a wafer. Two important things to be considered are ripple effect(in other words, the scale of a market) and simplicity of an application.

A Numerical Study on the Flow and Performance Characteristics of a Piezoelectric Micropump with Electromagnetic Resistance for Electrically Conducting Fluids (전자기 전항을 이용한 압전 구동방식 마이크로 펌프의 유동 및 성능 특성에 관한 수치해석적 연구)

  • An, Yong-Jun;Choi, Chung-Ryul;Kim, Chang-Nyung
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2788-2793
    • /
    • 2008
  • A numerical analysis has been conducted for flow characteristics and performance of a micropump with piezodisk and MHD(Magnetohydrodynamics) fluid. Various micro systems which could not be considered in the past have been recently growing with the development of MEMS(Micro Electro Mechanical System) and micro machining technology. Especially, micropumps, essential part of micro fluidic devices, are being lively studies by many researchers. In the present study, the piezo electric micropump with electromagnetic resistance for electrically conducting fluids is considered. The prescribed grid deformation method is used for the displacement of the membrane. The change of the performance of the micropump and flow characteristics of the electrically conducting fluid with the magnitude of the magnetic fields, duct size, the position of the inlet and outlet duct are investigated in the present study.

  • PDF

A study on the Character of Brush Deburring Grinding System (브러시 디버링 연삭 시스템 특성에 관한 연구)

  • Shin, Kwan-Soo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.3
    • /
    • pp.414-418
    • /
    • 2010
  • Due to the increasing demand for carious methodologies to improve the quality of products were introduced. A Brush the most frequently used type of grinding process is one of the deburring. in order to produce consistent burr shape, various machining conditions have been combined and applied to disk grinding process. Between the workpiece and the grinding disc to earn depends on the angle of the slope has been observed. Drastic increase of tool wear has been also observed along the inclination angle variation. Various burr shapes have been captured and analyzed using image processing technique.

The Probabilistic Forcasting of Product's Surface Quality (제품 표면품질의 확률적 예측)

  • 여명구;양정회
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.20 no.43
    • /
    • pp.47-57
    • /
    • 1997
  • As a general index in surface quality of machined products, surface roughness is to measure worker's skill level, a ground product quality and machining accuracy, etc. The surface roughness is defined by a function of rotational speed and radius of a grinding wheel, distances of active grains composed of the wheel, and feed of a grinder's worktable. To predict surface roughness in horizontal surface grinding operations, probability distributions were used. Probability distribution functions(p.d.f.) of surface roughness were found as results when the size of active grains(=the radius of a grinding wheel) is given as uniform, exponential distribution, and the distance between active grains follows the distributions of uniform, exponential. For each pdf case, probabilistic features of surface roughness were also analyzed and presented. This study is a substantial step for determining mathematically the surface roughness instead of using empirical approaches. More works should be presented to develop a general model by which an accurate roughness value can be obtained in horizontal surface grinding operations.

  • PDF

A Part-Machine Grouping Algorithm Considering Alternative Part Routings and Operation Sequences (대체가공경로와 가공순서를 고려한 부품-기계 군집 알고리듬)

  • Baek, Jun-Geol;Baek, Jong-Kwan;Kim, Chang Ouk
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.29 no.3
    • /
    • pp.213-221
    • /
    • 2003
  • In this paper, we consider a multi-objective part-machine grouping problem, in which part types have several alternative part routings and each part routing has a machining sequence. This problem is characterized as optimally determining part type sets and its corresponding machine cells such that the sum of inter-cell part movements and the sum of machine workload imbalances are simultaneously minimized. Due to the complexity of the problem, a two-stage heuristic algorithm is proposed, and experiments are shown to verify the effectiveness of the algorithm.

An efficient Methods for Placing the Cooling Lines and Ejector Pins of Injection Mold in 3D CAD system (3D CAD를 이용한 사출금형의 쿨링 라인과 이젝터 핀의 효과적인 배치 방법)

  • Lee, Cheol-Soo;Park, Gwang-Ryeol
    • IE interfaces
    • /
    • v.13 no.2
    • /
    • pp.157-165
    • /
    • 2000
  • In this paper, an efficient method is proposed to place the cooling lines(CLS) and ejector pins(EPS) of mold design. The other components of mold, except CLS and EPS, can be generated automatically by batch processing. But the placements and sizes of CLS and EPS depend on the shapes of a part, so that the design works of CLS and EPS should be processed interactively. Using the pre-defined reference points, the positions of CLS and EPS can be determined interactively. By the proposed method, the interference occurred during placing CLS and EPS can be avoided, and the proper lengths of them can be calculated automatically. The information of the positions and lengths are stored in BOM database for generating a machining data. The proposed method is implemented with Unigraphics API functions and C language, tested on Unigraphics V15.

  • PDF