• Title/Summary/Keyword: Machine availability

Search Result 170, Processing Time 0.022 seconds

Development of a Hydrostatic Guideway Driven by the Linear Motor (리니어모터를 이용한 초정밀 유정압안내면 개발)

  • 박천홍;오윤진;황주호;이득우
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.6
    • /
    • pp.139-144
    • /
    • 2004
  • In order to discuss the availability of hydrostatic guideways driven by the coreless linear motor to ultra precision machine tools, a prototype of guideway is designed and tested in this research. A coreless linear DC motor with the continuous force of 156 N and a laser scale with the resolution of 0.01 ${\mu}{\textrm}{m}$ are used as the feeding system. The experiments are performed on the static stuffiness, motion accuracy, positioning accuracy, microstep response and variation of velocity. The guideway has the infinite axial stillness within 50 N of applied load, and by the motion error compensation method using the Active Controlled Capillary, 0.08 ${\mu}{\textrm}{m}$ of linear motion error and 0.1 arcsec of angular motion error are acquired. The guideway also has 0.21 ${\mu}{\textrm}{m}$ of positioning error and 0.09 ${\mu}{\textrm}{m}$ of repeatability, and it shows the stable response against the 0.01 ${\mu}{\textrm}{m}$ resolution step command. The velocity variation of feeding system is less than 0.6 %. From these results, it is confirmed that the hydrostatic guideway driven by the coreless linear motor is very useful fur the ultra precision machine tools.

Developing a Big Data Analytics Platform Architecture for Smart Factory (스마트공장을 위한 빅데이터 애널리틱스 플랫폼 아키텍쳐 개발)

  • Shin, Seung-Jun;Woo, Jungyub;Seo, Wonchul
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.8
    • /
    • pp.1516-1529
    • /
    • 2016
  • While global manufacturing is becoming more competitive due to variety of customer demand, increase in production cost and uncertainty in resource availability, the future ability of manufacturing industries depends upon the implementation of Smart Factory. With the convergence of new information and communication technology, Smart Factory enables manufacturers to respond quickly to customer demand and minimize resource usage while maximizing productivity performance. This paper presents the development of a big data analytics platform architecture for Smart Factory. As this platform represents a conceptual software structure needed to implement data-driven decision-making mechanism in shop floors, it enables the creation and use of diagnosis, prediction and optimization models through the use of data analytics and big data. The completion of implementing the platform will help manufacturers: 1) acquire an advanced technology towards manufacturing intelligence, 2) implement a cost-effective analytics environment through the use of standardized data interfaces and open-source solutions, 3) obtain a technical reference for time-efficiently implementing an analytics modeling environment, and 4) eventually improve productivity performance in manufacturing systems. This paper also presents a technical architecture for big data infrastructure, which we are implementing, and a case study to demonstrate energy-predictive analytics in a machine tool system.

Development of an oneM2M-compliant IoT Platform for Wearable Data Collection

  • Ahn, Il Yeup;Sung, Nak-Myoung;Lim, Jae-Hyun;Seo, Jeongwook;Yun, Il Dong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.1
    • /
    • pp.1-15
    • /
    • 2019
  • Internet of Things (IoT) is commonly referred to as a future internet technology to provide advanced services by interconnecting physical and virtual things, collecting and using many data from them. The IoT platform is a server platform with a common architecture to collect and share the data independent of the IoT devices and services. Recently, oneM2M, the global standards initiative for Machine-to-Machine (M2M) communications and the IoT announced the availability of oneM2M Release 2 specifications. Accordingly, this paper presents a new oneM2M-compliant IoT platform called Mobius 2.0 and proposes its application to collect the biosignal data from wearable IoT devices for emotion recognition. Experimental results show that we can collect various biosignal data seamlessly and extract meaningful features from the biosignal data to recognize two emotions of joy and sadness.

Development Direction of Reliability-based ROK Amphibious Assault Vehicles (신뢰성 기반 한국군 차기 상륙돌격장갑차 발전방향)

  • Baek, Ilho;Bong, Jusung;Hur, Jangwook
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.2
    • /
    • pp.14-22
    • /
    • 2021
  • A plan for the development of reliability-based ROK amphibious assault vehicles is proposed. By analyzing the development case of the U.S. EFV, considerations for the successful development of the next-generation Korea Forces amphibious assault vehicle are presented. If the vehicle reliability can be improved to the level of the fourth highest priority electric unit for power units, suspensions, decelerators, and body groups, which have the highest priority among fault frequency items, a system level MTBF of 36.4%↑ can be achieved, and the operational availability can be increased by 3.5%↑. The next-generation amphibious assault vehicles must fulfill certain operating and performance requirements, the underlying systems must be built, and sequencing of the hybrid engine and the modular concept should be considered. Along with big-data- and machine-learning-based failure prediction, machine maintenance based on augmented reality/virtual reality and remote maintenance should be used to improve the ability to maintain combat readiness and reduce lifecycle costs.

Evolutionary Computing Driven Extreme Learning Machine for Objected Oriented Software Aging Prediction

  • Ahamad, Shahanawaj
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.2
    • /
    • pp.232-240
    • /
    • 2022
  • To fulfill user expectations, the rapid evolution of software techniques and approaches has necessitated reliable and flawless software operations. Aging prediction in the software under operation is becoming a basic and unavoidable requirement for ensuring the systems' availability, reliability, and operations. In this paper, an improved evolutionary computing-driven extreme learning scheme (ECD-ELM) has been suggested for object-oriented software aging prediction. To perform aging prediction, we employed a variety of metrics, including program size, McCube complexity metrics, Halstead metrics, runtime failure event metrics, and some unique aging-related metrics (ARM). In our suggested paradigm, extracting OOP software metrics is done after pre-processing, which includes outlier detection and normalization. This technique improved our proposed system's ability to deal with instances with unbalanced biases and metrics. Further, different dimensional reduction and feature selection algorithms such as principal component analysis (PCA), linear discriminant analysis (LDA), and T-Test analysis have been applied. We have suggested a single hidden layer multi-feed forward neural network (SL-MFNN) based ELM, where an adaptive genetic algorithm (AGA) has been applied to estimate the weight and bias parameters for ELM learning. Unlike the traditional neural networks model, the implementation of GA-based ELM with LDA feature selection has outperformed other aging prediction approaches in terms of prediction accuracy, precision, recall, and F-measure. The results affirm that the implementation of outlier detection, normalization of imbalanced metrics, LDA-based feature selection, and GA-based ELM can be the reliable solution for object-oriented software aging prediction.

Investigation of neural network-based cathode potential monitoring to support nuclear safeguards of electrorefining in pyroprocessing

  • Jung, Young-Eun;Ahn, Seong-Kyu;Yim, Man-Sung
    • Nuclear Engineering and Technology
    • /
    • v.54 no.2
    • /
    • pp.644-652
    • /
    • 2022
  • During the pyroprocessing operation, various signals can be collected by process monitoring (PM). These signals are utilized to diagnose process states. In this study, feasibility of using PM for nuclear safeguards of electrorefining operation was examined based on the use of machine learning for detecting off-normal operations. The off-normal operation, in this study, is defined as co-deposition of key elements through reduction on cathode. The monitored process signal selected for PM was cathode potential. The necessary data were produced through electrodeposition experiments in a laboratory molten salt system. Model-based cathodic surface area data were also generated and used to support model development. Computer models for classification were developed using a series of recurrent neural network architectures. The concept of transfer learning was also employed by combining pre-training and fine-tuning to minimize data requirement for training. The resulting models were found to classify the normal and the off-normal operation states with a 95% accuracy. With the availability of more process data, the approach is expected to have higher reliability.

Improving Chest X-ray Image Classification via Integration of Self-Supervised Learning and Machine Learning Algorithms

  • Tri-Thuc Vo;Thanh-Nghi Do
    • Journal of information and communication convergence engineering
    • /
    • v.22 no.2
    • /
    • pp.165-171
    • /
    • 2024
  • In this study, we present a novel approach for enhancing chest X-ray image classification (normal, Covid-19, edema, mass nodules, and pneumothorax) by combining contrastive learning and machine learning algorithms. A vast amount of unlabeled data was leveraged to learn representations so that data efficiency is improved as a means of addressing the limited availability of labeled data in X-ray images. Our approach involves training classification algorithms using the extracted features from a linear fine-tuned Momentum Contrast (MoCo) model. The MoCo architecture with a Resnet34, Resnet50, or Resnet101 backbone is trained to learn features from unlabeled data. Instead of only fine-tuning the linear classifier layer on the MoCopretrained model, we propose training nonlinear classifiers as substitutes for softmax in deep networks. The empirical results show that while the linear fine-tuned ImageNet-pretrained models achieved the highest accuracy of only 82.9% and the linear fine-tuned MoCo-pretrained models an increased highest accuracy of 84.8%, our proposed method offered a significant improvement and achieved the highest accuracy of 87.9%.

Development of a model to analyze the relationship between smart pig-farm environmental data and daily weight increase based on decision tree (의사결정트리를 이용한 돈사 환경데이터와 일당증체 간의 연관성 분석 모델 개발)

  • Han, KangHwi;Lee, Woongsup;Sung, Kil-Young
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.12
    • /
    • pp.2348-2354
    • /
    • 2016
  • In recent days, IoT (Internet of Things) technology has been widely used in the field of agriculture, which enables the collection of environmental data and biometric data into the database. The availability of big data on agriculture results in the increase of the machine learning based analysis. Through the analysis, it is possible to forecast agricultural production and the diseases of livestock, thus helping the efficient decision making in the management of smart farm. Herein, we use the environmental and biometric data of Smart Pig farm to derive the accurate relationship model between the environmental information and the daily weight increase of swine and verify the accuracy of the derived model. To this end, we applied the M5P tree algorithm of machine learning which reveals that the wind speed is the major factor which affects the daily weight increase of swine.

Motion Recognition for Kinect Sensor Data Using Machine Learning Algorithm with PNF Patterns of Upper Extremities

  • Kim, Sangbin;Kim, Giwon;Kim, Junesun
    • The Journal of Korean Physical Therapy
    • /
    • v.27 no.4
    • /
    • pp.214-220
    • /
    • 2015
  • Purpose: The purpose of this study was to investigate the availability of software for rehabilitation with the Kinect sensor by presenting an efficient algorithm based on machine learning when classifying the motion data of the PNF pattern if the subjects were wearing a patient gown. Methods: The motion data of the PNF pattern for upper extremities were collected by Kinect sensor. The data were obtained from 8 normal university students without the limitation of upper extremities. The subjects, wearing a T-shirt, performed the PNF patterns, D1 and D2 flexion, extensions, 30 times; the same protocol was repeated while wearing a patient gown to compare the classification performance of algorithms. For comparison of performance, we chose four algorithms, Naive Bayes Classifier, C4.5, Multilayer Perceptron, and Hidden Markov Model. The motion data for wearing a T-shirt were used for the training set, and 10 fold cross-validation test was performed. The motion data for wearing a gown were used for the test set. Results: The results showed that all of the algorithms performed well with 10 fold cross-validation test. However, when classifying the data with a hospital gown, Hidden Markov model (HMM) was the best algorithm for classifying the motion of PNF. Conclusion: We showed that HMM is the most efficient algorithm that could handle the sequence data related to time. Thus, we suggested that the algorithm which considered the sequence of motion, such as HMM, would be selected when developing software for rehabilitation which required determining the correctness of the motion.

IoT Security and Machine Learning

  • Almalki, Sarah;Alsuwat, Hatim;Alsuwat, Emad
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.5
    • /
    • pp.103-114
    • /
    • 2022
  • The Internet of Things (IoT) is one of the fastest technologies that are used in various applications and fields. The concept of IoT will not only be limited to the fields of scientific and technical life but will also gradually spread to become an essential part of our daily life and routine. Before, IoT was a complex term unknown to many, but soon it will become something common. IoT is a natural and indispensable routine in which smart devices and sensors are connected wirelessly or wired over the Internet to exchange and process data. With all the benefits and advantages offered by the IoT, it does not face many security and privacy challenges because the current traditional security protocols are not suitable for IoT technologies. In this paper, we presented a comprehensive survey of the latest studies from 2018 to 2021 related to the security of the IoT and the use of machine learning (ML) and deep learning and their applications in addressing security and privacy in the IoT. A description was initially presented, followed by a comprehensive overview of the IoT and its applications and the basic important safety requirements of confidentiality, integrity, and availability and its application in the IoT. Then we reviewed the attacks and challenges facing the IoT. We also focused on ML and its applications in addressing the security problem on the IoT.