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Abstract

In this study, we present a novel approach for enhancing chest X-ray image classification (normal, Covid-19, edema, mass

nodules, and pneumothorax) by combining contrastive learning and machine learning algorithms. A vast amount of unlabeled

data was leveraged to learn representations so that data efficiency is improved as a means of addressing the limited availability

of labeled data in X-ray images. Our approach involves training classification algorithms using the extracted features from a

linear fine-tuned Momentum Contrast (MoCo) model. The MoCo architecture with a Resnet34, Resnet50, or Resnet101

backbone is trained to learn features from unlabeled data. Instead of only fine-tuning the linear classifier layer on the MoCo-

pretrained model, we propose training nonlinear classifiers as substitutes for softmax in deep networks. The empirical results

show that while the linear fine-tuned ImageNet-pretrained models achieved the highest accuracy of only 82.9% and the linear

fine-tuned MoCo-pretrained models an increased highest accuracy of 84.8%, our proposed method offered a significant

improvement and achieved the highest accuracy of 87.9%.

Index Terms: Chest X-ray image, Contrastive learning, Image classification, Self-supervised learning

I. INTRODUCTION

The lung is an important human organ. Lung diseases can

affect health and even lead to death. According to the World

Health Organization, the number of deaths attributed to lung-

related diseases exceeded 3.3 million individuals in 2017.

The Covid-19 pandemic has caused more than 6.9 million

deaths and approximately 768 million infections as of June

28, 2023 (WHO, https://www.who.int). Chest X-ray is the

most cost-effective diagnostic tool and a common method

for diagnosing and screening lung diseases. However, dis-

ease diagnosis based on chest X-ray images requires highly

skilled radiologists. The potential subjectivity of lung dis-

eases detection from X-ray images can lead to inaccurate

diagnostic results and less effective treatments. Therefore, a

system that can assist in disease diagnosis from chest radio-

graphs will provide significant treatment cost benefits to

patients and improve their physical and mental health.

Deep learning has been widely applied to solve problems

related to medical image data such as X-ray, computed

tomography (CT), and magnetic resonance imaging (MRI)

images in recent years and achieved promising results [1-3].

However, deep learning requires large amounts of annotated

data. Unfortunately, the availability of labeled medical data

is limited owing to a number of factors such as a lack of

domain experts, privacy regulations, and expensive and time-

consuming data labeling processes. Self-supervised learning

is an alternative approach in which the wealth of available
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unlabeled data is leveraged for the learning of useful repre-

sentations or features without explicit human annotation.

Impressive results have been obtained in this approach by

utilizing unlabeled data images to generate pretrained mod-

els, which were subsequently fine-tuned using a limited

amount of labeled data [4-7]. The pretrained model was con-

structed by maximizing the agreement between different

views of the same image and minimizing the agreement

between different images based on a loss function. Self-

supervised learning offers improved accuracy compared to

supervised learning using labeled data [4-8].

In this study, a novel approach is proposed for improving

the X-ray image classification of normal lungs and lungs

with four lung diseases comprising Covid-19, edema, mass-

nodule, and pneumothorax. In our approach, a self-super-

vised learning technique is combined with supervised learn-

ing algorithms to efficiently classify X-ray images of lung

diseases. The linear fine-tuned model obtained from Momen-

tum Contrast (MoCo) contrastive learning is used as a fea-

ture extractor for labeled X-ray images. The extracted

features are then trained on classification algorithms com-

prising support vector machine (SVM) [9], LightGBM [10],

XGBoost [11], and CatBoost [12], which are used to substi-

tute for softmax in deep networks. The experimental results

show that our proposed approach achieves better accuracy

than those of linear fine-tuned MoCo-pretrained models.

The remainder of this paper is organized as follows: The

related work on X-ray image lung disease classification is

briefly discussed in Section II. Our proposed method is pre-

sented in Section III and the experimental results in Section

IV. The conclusions and future work are presented in Section

V.

II. RELATED WORK

Deep learning techniques have been applied to lung dis-

ease detection from chest X-ray images. A convolutional

neural network for image classification problems with 12

classes was proposed and an accuracy of 86% achieved [13].

Chouhan et al. [14] investigated the combination of five

deep learning models with transfer learning for pneumonia

detection in chest X-ray images and achieved an accuracy of

96.4% using their ensemble model. A CNN architecture

called CheXNeXt for classifying 14 different pathologies

using chest X-ray images as the input was developed [15].

Bhandary et al. suggested a deep learning framework based

on a modified version of AlexNet and a SVM to detect lung

abnormalities in chest X-ray and CT images [16]. A novel

method that incorporates local variance analysis and a proba-

bilistic neural network for classifying lung carcinomas with

92% accuracy was introduced in [17]. A transfer learning

method involving two convolutional neural networks (VGG16

and InceptionV3) was applied in [18] for pneumonia classifi-

cation in chest X-ray images.

The outbreak of the Covid-19 pandemic has resulted in

many studies on diagnosing Covid-19 through the applica-

tion of deep learning to chest X-ray images. In [19], a SVM

model was employed on top of deep networks for detecting

Covid-19 in chest X-ray images and the highest accuracy of

96.16% was achieved. In [20], Afshar et al. proposed a

model framework based on capsule networks named COVID-

CAPS for diagnosing Covid-19 from X-ray images. An accu-

racy of 95.7%, sensitivity of 90%, and specificity of 95.8%

were achieved. A new deep learning framework called

COVIDX-Net was presented in [21], in which seven deep

convolutional neural network architectures were used to con-

struct a framework for classifying X-ray images. The highest

F1-scores of 89% and 91% were achieved for normal

patients and patients infected by Covid-19, respectively.

Ozturk et al. developed a model for automatic Covid-19

diagnosis using X-ray images as input [22]. Their system

achieved an accuracy of 98.08% for two-class scenarios

(Covid-19 and No-Findings) and 87.02% for multiclass sce-

narios (Covid-19, No-Findings, and pneumonia).

Self-supervised learning has recently received consider-

able attention from the machine learning community because

of its ability to construct trained models from unlabeled

datasets and improve performance in downstream tasks such

as fine-tuning labeled data. This method is especially crucial

for addressing the scarcity of annotated data and improving

the accuracy of classification models in medical imaging.

Chen et al. proposed a self-learning framework called Sim-

CLR, which is an improvement over ImageNet [6,7]. In

[4,5], the use of MoCo for contrastive learning was proposed

and competitive results achieved by fine-tuning a linear clas-

sifier using the ImageNet dataset. In [8], Sowrirajan pro-

posed a method called MoCo-CXR for X-ray image

classification based on MoCo contrastive learning. This

method was designed for detecting several lung diseases

such as pleural effusion, tuberculosis, and atelectasis. MoCo-

CXR performed better than an ImageNet-pretrained model

with only fine-tuning.

III. METHODOLOGY

A. MoCo Self-Supervised Learning

Promising results have been achieved in self-supervised

learning methods such as MoCo [4,5] by leveraging unla-

beled data to generate a pretrained model in which a visual

representation encoder is trained based on a loss function. In

the MoCo architecture, features are learnt from unlabeled

data by training two encoders comprising the encoder and

the momentum encoder. Both encoders have the same archi-
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tecture, which is typically a deep neural network such as a

convolutional neural network. MoCo is a method for build-

ing large and consistent dictionaries for learning from unla-

beled data through a contrastive loss function called InfoNCE,

which is applied to measure the agreement between positive

and negative image pairs. The positive image pairs are cre-

ated by applying two data-augmentation operators on the

same image. The dictionary is used as a queue for samples

and updated by enqueuing the current mini-batch and dequeu-

ing the oldest mini-batch. The training process involves

updating the parameters of the encoder to minimize the con-

trastive loss using backpropagation. At the same time, the

momentum encoder parameters are updated by applying an

exponential moving average to the parameters of the

encoder. Labeled data is subsequently used to fine-tune the

MoCo-pretrained model.

The overall flowchart of the X-ray image-based lung dis-

ease classification process is shown in Fig. 1. The CheXpert

dataset [24] is first used to train the MoCo architecture with

a backbone based on the Resnet34, Resnet50, or Resnet101

deep learning network architectures [23]. The parameters

from ImageNet are loaded onto the backbone of the deep

learning architecture and then trained on MoCo with contras-

tive learning by applying the image rotation and image flip

transformations. Several data augmentation methods for

unlabeled data such as random crop, grayscale, jitter, hori-

zontal flip (MoCo v1 [4]), and Gaussian blurring (MoCo v2

[5]) are provided in MoCo. However, because X-ray images

are grayscale images and disease diagnosis from X-ray

images depends on specific parts of the image, the grayscale,

jitter, and blurring transformations are unsuitable for X-ray

images as the image labels may be modified. We therefore

applied two types of data augmentation comprising random

rotation (10°) and horizontal flipping on the images to create

pairs of positive images for contrastive learning through a

loss function in a similar manner to [8]. The model obtained

from MoCo after the first step is denoted as Model 1.

Supervised learning was performed by fine-tuning Model

1. All the layers of the backbone model were frozen and a

linear classifier layer trained. The labeled dataset was

divided into three subsets comprising the training, valid, and

test sets. The training and valid sets were passed through

Model 1 to fine-tune the linear layer to obtain Model 2. A

test set was used for evaluation. We experimented with fine-

tuning using linear classifiers from an ImageNet model and a

MoCo model pretrained with X-ray images.

B. Feature Extraction and Classifier Training

Our goal is to use the linear fine-tuned MoCo Model 2 to

improve X-ray image classification by integrating it with

nonlinear classifiers. In other words, the nonlinear classifiers

substitute for softmax in the deep networks. In our approach,

Model 2 is used as an extractor to extract features (represen-

tations) from the labeled dataset. The SVM, LightGBM,

XGBoost, and CatBoost nonlinear classifiers are subse-

quently trained using the extracted features.

The SVM algorithm [9] with a radial basis function (RBF)

kernel is a powerful algorithm for multiclass classification.

The use of RBFs to handle complex decision boundaries in

feature space makes this an effective algorithm for nonlinear

data. The hyperparameters C and gamma γ need to be tuned

for optimal performance. LightGBM [10] is a gradient boost-

ing framework known for its high speed and efficiency

developed by Microsoft. It uses techniques such as gradient-

based one-sided sampling (GOSS) and exclusive feature

bundling (EFB) to achieve fast training and low memory

usage while maintaining high accuracy. Extreme gradient

boosting (XGBoost) [11] is a scalable and efficient gradient

boosting system used widely owing to its performance and

flexibility. The tree construction process is optimized using a

regularized objective function and tree pruning techniques to

achieve high prediction accuracy and robustness against

overfitting. CatBoost [12] is a gradient boosting algorithm

developed by Yandex for categorical features. It employs

advanced strategies such as ordered boosting and various

regularization techniques to achieve high accuracy with min-

imal hyperparameter tuning.

Fig. 1. Diagram of chest X-ray image classification process.
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We demonstrate that better results can be achieved by per-

forming feature extraction with Model 2 to train a nonlinear

classifier compared to fine-tuning a MoCo model without

trained nonlinear classifiers. The detailed experimental

results are presented in Section IV.

C. Chest X-Ray Image Dataset

An actual chest X-ray dataset was obtained from public

sources. The CheXpert X-ray dataset [24] was used as an

unlabeled dataset to train the contrastive learning with

MoCo. This dataset was published by a Stanford University

research team in 2019. We used 120,000 images from CheX-

pert for training with MoCo.

The dataset has five labels for healthy patients, patients

infected by Covid-19, and patients with lung diseases

excluding Covid-19 comprising edema, mass nodules and

pneumothorax. This dataset was obtained from published

datasets with five classes (normal, Covid-19, edema, mass

nodule, and pneumothorax) [24-34]. The total number of

images is 98,996. The X-ray images were tagged with one of

the five classes. Examples of chest X-ray images in the five

classes are shown in Fig. 2. All the images were resized to

224 × 224 pixels. The labeled dataset was divided into three

subsets with 70% of the images in the training set, 15% in

the valid set, and 15% in the test set. The details of the data-

set are listed in Table 1.

IV. EXPERIMENTS AND RESULTS

A. Experimental Setup

The X-ray image lung disease classification program was

written in Python. The Resnet34, Resnet50, and Resnet101

[23] deep learning network architectures were implemented

using the Keras, TensorFlow [35], Scikit-learn [36], and

Pytorch libraries. All the experimental results were obtained

on a computer running Ubuntu 20.04.5 with an Intel(R)

CoreTM i5-10400 CPU @ 2.90GHz × 12, 16 GB of RAM,

and a 12 GB GDDR6 NVIDIA GeForce RTX 3060 with

3584 CUDA cores.

The training process for lung disease classification in chest

radiographs comprises three main stages. In the first stage,

we trained MoCo with 120,000 images extracted from the

CheXpert dataset [24]. The model parameters for contrast

learning training on MoCo comprise a batch size of 32,

learning rate of 10−3, momentum of 0.9, weight decay of 10−3,

the Adam optimizer, and 20 epochs. The checkpoint obtained

in the first stage was used to fine-tune the linear layer on the

labeled dataset in the second stage. Training was performed

using three backbones comprising Resnet34, Resnet50, and

Resnet101.

In the third stage, the features extracted from the linear

fine-tuned MoCo model trained on the training set were used

to determine the best hyper-parameters (nonlinear RBF ker-

nel function with γ = 0.0001 and positive constant cost of

105 considering the trade-off between margin size and

errors) for the SVM model. LightGBM and CatBoost were

trained using a max_depth of 10 and learning_rate of 0.1 and

the objective set to multiclass. Model XGBoost was trained

with the objective set to multiple:softprob, a learning_rate of

0.1, and max_depth of 8.

B. Classification Results

The classification results from the various methods are

presented in Table 2 and Fig. 3. Model 0 (M0) was trained

by fine-tuning a linear layer in a ImageNet-pretrained model

using the labeled dataset. Model 2 (M2) was obtained by

fine-tuning the linear layer in the MoCo model using chest

X-ray images. We experimented with feature extraction

using the M0 and M2 models and trained SVM, LightGBM,

XGBoost, and CatBoost classifiers.

The comprehensive X-ray image lung disease classifica-

tion results are presented in Table 2 and Fig. 3. The experi-

mental results on the three backbone architectures show that

our proposed method, in which features are extracted from a

linear fine-tuned MoCo model combined with a trained non-

linear classifier, achieved better results compared to solely

fine-tuning a linear classifier on the ImageNet and MoCo

pretrained models. In the experiment, the SVM, LightGBM,

CatBoost, and XGBoost classifiers were trained on features

extracted from the linear fine-tuned ImageNet and MoCo

models pretrained on X-ray images. The proposed method

achieved improved accuracy on all three network architec-

tures and four classification algorithms for both M0 and M2.

For the linear fine-tuned MoCo model with a Resnet34 back-

bone, the SVM classifier achieved the highest accuracy of

Table 1. Labeled chest X-ray dataset

Label Train set Valid set Test set

Normal 18,425 3,949 3,948

Covid-19 14,252 3,054 3,054

Edema 23,240 4,980 4,980

Mass-nodule 4,077 873 874

Pneumothorax 9,303 1,993 1,994

Fig. 2. Sample chest x-ray images.
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86.7%, followed by LightGBM (86.5%), XGBoost (86.3%),

and CatBoost (85.4%). The same ranking order for accuracy

holds for Resnet50 combined with the same classifiers.

Accuracies exceeding 87% were obtained by using features

extracted by M2 (Resnet101) to train the four classifiers with

the highest accuracy obtained from LightGBM (87.9%) fol-

lowed by XGBoost (87.8%), whereas the remaining classifi-

ers provided accuracies of 87.2% to 87.4%.

We found that compared to the MoCo model with only lin-

ear fine-tuning, the accuracy of our proposed method was

improved by at least 2.5% on the test set except for M2_Res-

net50 + CatBoost (1.5% improvement), as detailed in Table

3 and Fig. 4. The SVM classifier improved the classification

accuracy by 4.6, 2.9, and 2.8% compared with the linear

fine-tuned MoCo model with a Resnet34, Resnet50, and Res-

net101 backbone, respectively. All four classifiers improved

the accuracy of the Resnet34 backbone by more than 3.0%

with improvements of 4.6, 4.4, 4.2, and 3.3% for SVM,

LightGBM, XGBoost, and CatBoost, respectively.

Table 2. Classification results on the test set (%)

(a) Resnet34

Methods Accuracy Precision Recall F1-score

Model0 (M0) 77.5 72.4 67.8 69.6

Features(M0)+SVM 83.0 78.6 78.0 78.0

Features(M0)+LightGBM 82.1 78.4 72.8 74.6

Features(M0)+CatBoost 81.2 77.0 71.8 73.4

Features(M0)+XGBoost 81.7 78.6 72.4 74.2

Model 2 (M2) 82.1 78.8 74.8 75.6

Features(M2)+SVM 86.7 84.0 82.4 83.0

Features(M2)+LightGBM 86.5 84.4 80.8 82.4

Features(M2)+CatBoost 85.4 82.4 79.0 80.2

Features(M2)+XGBoost 86.3 84.0 80.4 81.8

(b) Resnet50

Methods Accuracy Precision Recall F1-score

Model0 (M0) 82.9 79.2 80.0 79.4

Features(M0)+SVM 83.7 80.0 80.4 80.0

Features(M0)+LightGBM 84.4 82.2 77.6 79.2

Features(M0)+CatBoost 83.2 80.2 75.8 77.2

Features(M0)+XGBoost 84.4 82.6 77.4 79.2

Model 2 (M2) 84.8 81.8 80.0 80.8

Features(M2)+SVM 87.7 85.4 84.0 84.6

Features(M2)+LightGBM 87.4 85.4 82.2 83.4

Features(M2)+CatBoost 86.3 83.6 80.4 81.6

Features(M2)+XGBoost 87.3 85.4 81.8 83.0

(c) Resnet101

Methods Accuracy Precision Recall F1-score

Model0 (M0) 82.5 78.8 77.8 78.2

Features(M0)+SVM 83.5 80.0 79.4 79.8

Features(M0)+LightGBM 84.1 81.4 76.6 78.2

Features(M0)+CatBoost 82.6 78.8 74.6 75.8

Features(M0)+XGBoost 83.7 81.0 76.0 77.6

Model 2 (M2) 84.6 81.6 80.2 81.0

Features(M2)+SVM 87.4 85.2 83.2 84.2

Features(M2)+LightGBM 87.9 86.2 83.4 84.6

Features(M2)+CatBoost 87.2 85.2 82.4 83.6

Features(M2)+XGBoost 87.8 86.0 83.4 84.4

Fig. 3. Classification accuracy on the test set.

Table 3. Accuracy improvement on the test set of our proposed method
compared to the linear fine-tuned MoCo model (%)

Method Resnet34 Resnet 50 Resnet101

Features(M2)+SVM 4.6 2.9 2.8

Features(M2)+LightGBM 4.4 2.6 3.3

Features(M2)+CatBoost 3.3 1.5 2.6

Features(M2)+XGBoost 4.2 2.5 3.2



J. lnf. Commun. Converg. Eng. 22(2): 165-171, Jun. 2024 

https://doi.org/10.56977/jicce.2024.22.2.165 170

V. CONCLUSION AND FUTURE WORKS

We presented a novel approach for improving the perfor-

mance of X-ray image classification by incorporating self-

supervised learning and classification algorithms. Contras-

tive learning was employed to learn features (representa-

tions) from the abundant pool of unlabeled data to enhance

data efficiency and address the limited availability of labeled

data in X-ray images. We gathered two datasets comprising

an unlabeled dataset (120,000 images) for self-supervised

learning and a labeled dataset (98,996 images) with five

classes. A linear fine-tuned MoCo model was integrated to

extract features for training nonlinear classifiers (SVM,

LightGBM, CatBoost, and XGBoost) to improve classifica-

tion accuracy. The results of experiments with three ResNet

architectures show that the linear fine-tuned ImageNet pre-

trained models, with the exception of ResNet34 (77.5%),

achieved accuracies of at least 82.5% on the test set.

Although the linear fine-tuned MoCo models with Resnet34,

Resnet50, and Resnet101 backbones achieved noteworthy

accuracies 82.1, 84.8, and 84.6%, respectively, our proposed

method further increased the accuracy by 1.5% to 4.8% com-

pared to MoCo with only fine-tuned linear layers. Through

combination with the SVM, LightGBM, XGBoost, and Cat-

Boost classification algorithms, the accuracy of our proposed

approach was improved by 4.6, 4.4, 4.2, and 3.3% for a Res-

net34 backbone, respectively. Our method achieved superior

performance compared to solely fine-tuning a linear classi-

fier layer on the MoCo-pretrained model with the highest

accuracy of 87.9%.

In the near future, we intend to collect more chest X-ray

images of patients with other lung diseases and conduct

experiments on the combination of other self-supervised

learning methods with other deep networks.
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