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a b s t r a c t

During the pyroprocessing operation, various signals can be collected by process monitoring (PM). These
signals are utilized to diagnose process states. In this study, feasibility of using PM for nuclear safeguards
of electrorefining operation was examined based on the use of machine learning for detecting off-normal
operations. The off-normal operation, in this study, is defined as co-deposition of key elements through
reduction on cathode. The monitored process signal selected for PM was cathode potential. The neces-
sary data were produced through electrodeposition experiments in a laboratory molten salt system.
Model-based cathodic surface area data were also generated and used to support model development.
Computer models for classification were developed using a series of recurrent neural network archi-
tectures. The concept of transfer learning was also employed by combining pre-training and fine-tuning
to minimize data requirement for training. The resulting models were found to classify the normal and
the off-normal operation states with a 95% accuracy. With the availability of more process data, the
approach is expected to have higher reliability.
© 2021 Korean Nuclear Society, Published by Elsevier Korea LLC. This is an open access article under the

CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Pyroprocessing is an electrochemical recycling technology for
used fuels. As an alternative to aqueous technologies, it has several
advantages. Most importantly, it prevents pure plutonium separa-
tion, thus provides inherent proliferation resistance in nuclear
materials handling. At the same time, due to the difficulty in
applying conventional nuclear materials accountancy, pyropro-
cessing demands advanced methods of nuclear safeguards [1,2].

Conventional nuclear safeguardsmethods mainly rely on a mass
balance-based nuclear material accountancy using sample extrac-
tion and destructive assay (DA). However, an inherent uncertainty
in materials balance remains when these methods are applied to
pyroprocessing. First, a sample obtained from the input stream is
not representative because the input is not entirely homogenized.
Second, due to continuous accumulation of processed materials, it
is impractical to cleanup the mass balance areas where nuclear
material accounting is implemented. This causes difficulty in
by Elsevier Korea LLC. This is an
meeting the IAEA's requirement on timely detection of the loss of a
significant quantity of special nuclear materials. Responding to this
need, new approaches and technologies to enhance existing safe-
guards are being developed.

For any planned pyroprocessing facility, in order to observe the
state of facility operation, significant amounts of operation-related
data will be collected. The use of the collected data in process
diagnosis is referred to as process monitoring (PM). One possible
avenue to contribute to enhancing nuclear safeguards of pyropro-
cessing is to use PM to supplement existing safeguards approaches
[3e6]. With the use of near real time data of the process from PM, it
is possible to indirectly track the flow of special nuclear materials
(SNMs), constituting more robust safeguards approach. Another
advantage of using PM for safeguards purposes is that the facility
will require very little to no system reconfiguration for data
acquisition. With the use of appropriate data collecting equipment,
sufficient amount of operation-related data can be collected to
support PM. Accordingly, PM is expected to help increasing confi-
dence in the safeguards for SNMs, lengthening the allowable in-
ventory period, requiring a much smaller number of samples for
inspection, and reducing false positive indications [7].
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The objective of this research is to examine the feasibility of
enhancing pyroprocessing safeguards by utilizing PM along with
machine learning technique. To support the objective, a cathode
potential produced during electrorefining (ER) is selected as a
target process signal. Artificial neural network (ANN) method was
applied as a tool to process the PM data. The research backgrounds
are explained in detail in the following section. Accordingly, an ER
operation state between normal and off-normal is determined in
the study using an ANN based classifier by observing a cathode
potential. To achieve the goal, two separate studies were con-
ducted: 1) Data acquisition by electrodeposition experiments to
obtain cathode potential data in normal and off-normal ER condi-
tions, and 2) Development of ANN based classifiers. The following
sections describe these two studies.
2. Research background

2.1. Electrorefining and its safeguards

The electrorefining (ER) process is the main unit process in
pyroprocessing. In the ER process, a variety of SNMs, such as
plutonium, are dissolved into a molten salt electrolyte from used
fuels and accumulated in the electrolyte. Depending on the pur-
pose, different designs of ER can be used. For example, one or more
solid cathodes can be employed to separate uranium in ER, or
uranium can be separated on a solid cathodewhile the actinides are
separated on a liquid cathode.

During ER, only uranium is electro-deposited on a solid cathode
due to the differences in equilibrium potentials among the existing
elements. Uranium ions oxidize active elements, mainly lanthanide
and actinide elements during ER process. These active elements
gradually accumulate in the molten salt. In the early stages of
operation, about 10 wt% of UCl3 is added to the system as a starting
material [8] and needs to be periodically replenished to prevent a
decrease in the uranium concentration. Therefore, it is necessary to
monitor whether adequate quantities of elements, including ura-
nium and plutonium, are maintained, to ensure consistent ER
operation.

Various ER sensors are available to measure physical properties
(temperature, pressure, electrolyte level, rotation speed) and elec-
trical properties (current, voltage, potential). Electrochemical or
spectroscopic methods can also be used to determine concentra-
tions of SNM in the electrolyte. Use of additional sensors where
nuclear material diversion could occur or is suspected can also be
considered based on the consideration of possible off-normal sce-
narios [9].

Occurrences of undeclared or unexpected situations can result
in off-normal operation, countering to the aim of the ER process.
Examples of off-normal operational state of ER include leakage of
materials, such as salt or gases (chlorine), loss of the inert atmo-
sphere required for successful ER operation, or electrodeposition of
unexpectedmetal on a cathode. While the first two phenomena are
related to safety or process robustness rather than safeguards, the
last one has direct relevance to nuclear safeguards. In normal ER
operating conditions, co-deposition of uranium and plutonium
rarely occurs given the difference in their reduction potentials.
However, theoretically, co-deposition of the elements on a cathode
can occur when the plutonium concentration in the molten salt is
high enough as the relative difference in reduction potential be-
tween the two elements is not very large. In addition, when the
supplied current is inappropriately high, the increased current
density of the cathode can drive co-deposition.
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2.2. Cathode potential for electrorefining safeguards

To determine the presence of the adequate quantities of these
elements in the ER operation, several PM approaches have been
suggested. These approaches include potentiometric sensors [10],
multi-bubblers [11,12], cyclic voltammetry (CV) [13,14], Laser-
Induced Breakdown Spectroscopy (LIBS) [15e18], neutron counter
[19], combining a neutron counter and CV [20], and multivariate
analytical techniques for voltammetric data [21]. While these ap-
proaches can be utilized to detect plutonium co-deposition on a
cathode or to determine the change in actinide (plutonium)
composition in the molten salt, difficulty commonly arises in
measuring the concentration of plutonium separately from the
electrolyte mixture containing various species of other actinides
and fission products.

Another signal available for the PM approach is cathode po-
tential. In fact, measured data on cathode potential provide a
simpler approach to plutonium codeposition detection. Cathode
potential is an electric signal recordedwhile metal ions are reduced
to metal on a cathode. The cathode potential is defined as follows
by the Nernst equation:

E¼ E00 þ RT
nF

lnðCoxÞ 1

where E is the electrode potential [V], E0’ is the standard apparent
reduction potential [V], R is the ideal gas constant [8.314 J/mol$K], T
is the absolute temperature [K], n is the number of electrons
involved in the oxidation-reduction reaction, F is the Faraday's
constant [96,485 C/mol], and Cox is the concentration of the react-
ing oxidants [mol/cm3].

The electrode potential is influenced by the variations in both
temperature (T) and the concentration of oxidants (Cox). Theoreti-
cally, since standard reduction potential is a thermodynamic
property of each element and differs from element to element, it is
possible to infer whether the process operation is in a normal state
(pure uranium deposition) or off-normal state (co-deposition) by
examining the changes in cathode potential. During pure uranium
deposition, the potential is maintained at a constant value. How-
ever, if other active elements start to deposit, the potential will shift
to a more negative value.

Examining cathode potential for nuclear safeguards purposes
has been considered in combination with modeling approaches.
Rappleye et al. [22] developed a computer code called, DREP
(Deposition Rates from Electrode Potential), to predict U, Pu, and Zr
deposition on the cathode and the element deposition rates by
analyzing cathode potential and cell current. Three types of oper-
ating modes were simulated in the code: U deposition, U/Pu
codeposition, and U/Zr codeposition. Since Pu has a more negative
reduction potential than U, when the cathode potential is more
negative than pure U deposition, DREP predicts less U deposition
and more Pu deposition. Also, if cathode potential is less negative
than pure U deposition, Zr codeposition is predicted. The instan-
taneous deposition rates calculated during a batch could be used to
estimate the final composition of the cathode deposits. Although
validation of the code is not complete, DREP has provided the
theoretical basis for real-time PM of the solid cathode product in ER
by utilizingmeasurable process readings, cathode potential and cell
current, to predict the deposition behavior at the cathode.

Shannon and Simpson [23] also suggested cathode potential as a
promising PM indicator based on a study of abnormal operation
detection in electrorefining using ERAD [24]. They simulated
diversion scenarios in which the ER process continued without
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refilling UCl3, and showed an increase in UePu codeposition as the
cathode potential decreased. While this simulation-based research
used extremely high current (more than 140 A) and a number of
uncontrolled cycles (about 30) to reach a codeposition-possible
condition (UePu ratio), the method indicates applicability of
cathode potential to safeguards of ER.

Sakamura et al. conducted electrowinning (EW) experiments to
study codeposition of uranium and plutonium onto an inert solid
cathode in LiCleKCl eutectic salt containing UCl3 and PuCl3 [25].
EW is a process used to recover actinides and lanthanides after ER.
Though the purposes of EW and ER are different, the processes are
based on the same principles of electrochemistry. By using both
potentiostatic and galvanostatic electrolysis, the research showed
actual responses of cathode potential based on the deposited ele-
ments and examined the behavior of UePu codeposition with
respect to concentration ratio and cathodic current density. When
the EW process was conducted at a cathodic current density higher
than the limiting current density of U3þ reduction, Pu was initially
codeposited with U. However, the electrode surface area increased
with the deposition of UePu metal, which facilitated U deposition.
This phenomenon was observed in chronopotentiograms of
LiCleKCleUCl3-PuCl3 eutectic salt.

According to the literature, use of cathode potential for nuclear
safeguards of ER appears promising. However, the actual electrode
potential is the result of the complex and diverse interactions of
various elements in molten salt. As these interactions are affected
by the exchange current densities of elements (which depend on
their concentrations), current density (which is affected by the
mass transfer of elements), and the continuous change of concen-
tration and cathode surface area, actual measurements of the
cathode potential signal can easily get complicated [26]. Therefore,
to determine the deposited elements on a cathode, a statistical
approach is often implemented to analyze the monitored data of
the cathode potential.

2.3. Machine learning in nuclear safeguards

Another key issue addressed in this research is to use machine
learning for safeguards applications. Machine learning is widely
recognized as a tool to effectively manage and utilize massive
amounts of data. In machine learning, existing data are used to
enable a computer to learn how to conduct a given task bymeans of
statistical inference, without explicit programming.

AI or machine learning has been applied in nuclear safeguards
since the 1990's. In 1994, Menlove et al. developed the software
Video Time and Radiation Analysis Program (VTRAP) to automati-
cally review and analyze continuous safeguards data from unat-
tended monitoring systems using pattern recognition by neural
networks [27]. Two types of data, C/S video and NDA sensor, were
used for monitoring the movement of nuclear material to distin-
guish normal material movements from off-normal activity. Ex-
periments were conducted to collect data to train the neural
network for pattern recognition. The results showed that VTRAP
can successfully distinguish between normal and off-normal data,
which indicates the feasibility of applying AI to nuclear safeguards.

Along with wide adaptation of computing techniques, a number
of research projects applied machine learning techniques to nu-
clear industry for improving safety, security, and safeguards. Ma-
chine learning is also being applied to PM research in order to
improve the robustness of the process operations. Some have also
proposed the application of machine learning to enhance pyro-
processing safeguards. Recently, Shoman et al. suggested the use of
machine learning for pyroprocessing safeguards to classify off-
normal operations by employing PM (mass measurements) and
NDA (nondestructive assay, e.g., gamma spectroscopy
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measurements) [28]. They simulated the data from running a
computer code - the Separations and Safeguards Performance
Model (SSPM) [29] and tested the feasibility of such approach by
using a support vector machine (SVM). They emphasized the
importance of unsupervised learning in safeguards, since it elimi-
nates the burden of identifying all possible diversion pathways
with acquisition of the corresponding data. The SVM detected not
only normal operation but also both direct and substitution
diversion.

An artificial neural network (ANN) is a well-known machine
learning technique. Thanks to the development of rapidly enhanced
computing techniques, ANN has been widely developed and many
ANN based architectures exist. Since ANN mimics human brain
function, simple components of ANN are neurons and connections
between the neurons. By varying the connections between neurons
to neurons and neurons to layers, a variety of NN architectures have
been developed. Representative architectures are a convolution
neural network (CNN) and recurrent neural network (RNN).
Depending on their specific purpose, those architectures are
commonly used in a variety of fields.

Pouri et al. examined the analysis of CV data to predict unseen
data sets (previously unencountered situations) by implementing
an ANN technique [30]. By using the data sets' interrelation be-
tween variables, ANN was trained in the study to mimic the ER's
electrochemical cell system thus to provide simulated CV data sets.
To develop an ANN structure and validate the prediction results,
published experimental data [31] were applied whichwas obtained
using 0.5e5 wt% of zirconium chloride (ZrCl4) in LiCleKCl molten
salt with different scan rates at 773 K. In each experimental data
set, the input data consisted of potential, process time, concentra-
tions and scan rates; the current was produced as output. About
43% of the total experimental data were used as training data.
ANN's predictive ability and limitations were examined by using
the remaining data set having different conditions (concentrations
and scan rates). This study indicated that ANN has good predictive
capability and a strong potential for application in safeguards for
pyroprocessing.

3. Experimental design for data collection

A series of electrodeposition experiments were designed and
conducted with various cell compositions to produce cathode po-
tential data in lab-scale. The experiments involved both single-
element deposition (normal operation) and two-element codepo-
sition (off-normal operation). Three lanthanides (Lns), La, Ce, and
Gd, with small differences in standard reduction potentials were
used as surrogate materials. This produces a favorable environment
for codeposition according to the order of reduction potential,
EGd > ECe > ELa. Accordingly, Gd or Ce (higher reduction potential) is
deposited first, followed by La. In the experiments, two types of
binary systems were employed; one using lanthanum - cerium
(LaeCe) and the other using lanthanum - gadolinium (LaeGd). Both
systems produced normal (single deposition) and off-normal (co-
deposition) data. Data were labeled based on the composition of
the deposits after being analyzed using inductively coupled plasma
atomic emission spectroscopy (ICP-OES). The composition of elec-
trochemical cells was designed the same way as in previous
research [20]; for more details and general descriptions of the ex-
periments, see reference 20. Only a brief explanation of each
experimental cell design is provided here.

Codeposition of two elements occurs when equilibrium poten-
tials of the elements are close. According to the Nernst equation
(Eqn. (1)), the difference in equilibrium potentials can be adjusted
by using the mole ratio of the electrolyte components. Differences
in electrode potential were varied from 0.00 to 0.15 V. The range of



Fig. 1. Electrochemical cell design for experiments.
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equilibrium potential differences was designed to be between 0.00
and 0.10 V for the CeeLa binary system and between 0.05 and 0.15 V
for the GdeLa binary system. A total of six experimental cells was
used. Considering that the electrolyte in an actual electrorefiner is
initially about 10 wt% UCl3, the experimental cells were also
designed to contain approximately 10 wt% GdCl3-LaCl3 or
CeCl3eLaCl3. An electrodeposition experiment was also conducted
in a cell containing 10 wt% LaCl3 to obtain a pure singular deposi-
tion signal. The designed electrochemical cells are presented in
Table 1.

The experiments for producing cathode potential during elec-
trodeposition (both singular deposition and co-deposition) were
conducted in a glove box in an inert atmosphere with less than
1 ppm of both oxygen and moisture. To allow room for dendrite
growth, a large furnace (SKUTT, KM-614, US) was employed and
located inside the glove box. The operating temperature was
maintained at 773 K (±3 K) as measured with a chromel-alumel
thermocouple.

The electrochemical cell used in the experiments consisted of
three electrodes in a molten salt bath: a working electrode, a
counter electrode, and a reference electrode. Theworking electrode
was a molybdenum wire with a 1 mm diameter (99.94%, Alfa
Aesar). This electrode was immersed 2 (±0.2) cm into the molten
salt. The counter electrode was an Ln metal (Ln ¼ La, Ce, or Gd,
99.9%, Alfa Aesar) rod located in a stainless steel basket. These two
electrodes were sheathed in alumina tubes to prevent electrical
conduction between materials. A Ag/AgCl reference electrode was
prepared using 1 wt% AgCl (99.997%, Alfa Aesar) in a LiCleKCl
eutectic salt with a silver wire (0.5 mm diameter, 99.9985%, Alfa
Aesar), contained in a thin mullite tube (4 mm inner diameter,
6 mm outer diameter). To prepare an electrolyte consisting of 59-
41 mol% LiCleKCl eutectic salt, LiCl (>99%, ACS, Alfa Aesar) and KCl
(>99%, ACS, Alfa Aesar) were mixed in an alumina crucible and
heated at 773 K for more than 3 h to remove anymoisture. After the
cell cooled down, LnCl3 (99.9%, ultry dry, Alfa Aesar) was added to
the mixture, which was then reheated to adjust the final molten
salt concentrations (See Table 1). A schematic of the electro-
chemical cell is shown in Fig. 1.

A constant electric current was applied and the cathode po-
tential was recorded for 600 s. To vary the deposition ratio, the
supplied current was varied from 100 to 500mA in 50mA intervals.
Each experiment was repeated at least 3 times. The bottom of the
cathode that was sheathed in alumina was surrounded by a
basket allowing capture of any fallen deposits. This minimized the
loss of electrodeposited material as shown in Fig. 1. A potentiostat/
galvanostat (Biologic, SP-150) was used in conjunction with EC-lab
software in the electrodeposit experiments.

After each experiment, the electrodeposits and the eutectic salts
were sampled and analyzed for their quantities and associated
compositions using ICP-OES (Agilent, Agilent ICP-OES 5110). The
electrodeposit samples were prepared by cutting the bottom of the
Mo electrode which contained the deposited lanthanides. The
Table 1
The compositions of each electrochemical cells in the electrodeposition experiments.

DE [V] CeCl3eLaCl3 Binary System

Cell Name CeCl3 [mol] (wt%) LaCl3 [mol] (wt%) XCe/XLa

e La0 e 0.160 (10.0%) e

0.00 Ce1 0.015 (0.90%) 0.145 (9.00%) 0.1
0.05 Ce2 0.080 (4.90%) 0.080 (4.90%) 1
0.10 Ce3 0.145 (9.00%) 0.015 (0.90%) 10
0.15 e
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samples were weighed and then dissolved in 20 ml of 10% HNO3.
Since 10% HNO3 cannot dissolve Mo metal, the Mo was collected
from the acid solution and weighed in order to subtract its weight
from the initial sample weight. Further dilution was conducted to
ensure the sample concentrationwas between 0.1 and 10 ppm. The
final acidity of ICP-OES samples was maintained at 2% HNO3. The
salt sample was weighed and then dissolved in 20 ml of 2% HNO3.
The salt analysis results were used to remove the effect of deposited
salt in determining the codeposition ratio. Ln contained in the salt
was subtracted from the quantity of deposits quantity.
4. Results of electrodeposition experiment and data labeling
for cathode potential

4.1. Feature of cathode potential data

Fig. 2 shows the cathode potential data from a Ce 1 cell when the
supplied current is 500mA. This experimental conditionwas one of
the most codeposition favorable environments. As shown in Fig. 2,
the cathode potential, after the initial drop, gradually increases as
electrodeposition takes place. Such gradual increase is due to a
reduction in the current density on the cathode as the cathodic
surface area enlarges with the growth of deposits. The initial rapid
reduction in cathode potential occurs because all of the reactants
surrounding the electrode are consumed by the instantaneous
electrodeposition as the supply of electric current begins. The
electrode potential increases as the concentration gradient stabi-
lizes over time through diffusion and as the cathodic surface area
grows. The cathode potentials steadily reach a plateau after a rapid
initial increase, which was confirmed through additional experi-
ments conducted for 120 min.

As mentioned before, electrode potential is the outcome of
various complex interactions in electrochemistry involving
GdCl3-LaCl3 Binary System

Cell Name GdCl3 [mol] (wt%) LaCl3 [mol] (wt%) XGd/XLa

e

Gd1 0.032 (2.1%) 0.128 (7.9%) 0.25
Gd2 0.114 (7.5%) 0.046 (2.8%) 2.5
Gd3 0.154 (10.1%) 0.006 (0.4%) 25



Table 3
Data labeling (grouping) method and the resulted number of data.

Data type Data acquisition
environment

Data
labeling

The number of cathode
potential data

Normal La singular cell N_La 27
CeeLa binary cell N_Ce 27
GdeLa binary cell N_Gd 28

Off-normal CeeLa binary cell O_Ce 29 þ 30 ¼ 59
GdeLa binary cell O_Gd 27 þ 32 ¼ 59

Fig. 2. A graph of a cathode potential obtained in Ce 1 cell (0.9 wt% CeCl3 and 9.0 wt%
LaCl3) by applying 500 mA.
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electrolyte and electrode. As these interactions are strongly affected
by the current density of the cathode, current density is a key factor
to the electrodeposition reaction. Furthermore, from a microscopic
viewpoint, the thickness of the diffusion layer is also a factor that
affects the deposition. The diffusion layer affects the amount of
current and the rate of oxidation-reduction of the reactants and
causes non-uniform deposition on the cathode due to the hetero-
geneity of the molten salt. Other factors such as time-dependent
changes in cathode surface area and concentrations of the species
in the electrolyte also affect the deposition, resulting in the cathode
geometry becoming complex. These interactions proceed contin-
uously over time with variations in the local conditions. Even
though experiments are conducted repeatedly under the same
experimental conditions, cathode potentials do not result in the
same pattern but only similar patterns due to the randomness of
the process.

An electrode reaction consists of an electron transfer to the
electrode surface and a mass transfer through diffusion, trans-
porting the reactants from the electrolyte to the surface of the
electrode. The electron transfer is faster as the over-voltage in-
creases, whereas the speed of the diffusion-controlled reactant
transfer is independent of the over-voltage, driven by the concen-
tration gradient between the electrode surface and the solution.
Therefore, when the over-voltage is large enough, the current is
determined by diffusion and cannot be increased beyond a certain
value. This value is called “limiting current.” If the supplied current
is greater than the limiting current, there is a lack of reactants
(element A) near an electrode which cannot be recovered by
diffusion. Therefore, another element (element B) having a more
negative reduction potential than element A is deposited along
with element A [25], leading into codeposition.
Table 2
The results of electrodeposition experiment: Co-deposition ratio and the number of cath

Cell Codeposition ratio: La/Ce The number of cathode potential data
(the number of DA result)

La 0 e 27 (27)
Ce 3 <5% 27 (5)
Ce 2 40e60% 29 (8)
Ce 1 300e1200% 30 (18)
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4.2. Data labeling

The codeposition ratios measured for each of the experimental
cells are presented in Table 2. As mentioned, when the electrode
potential difference is small, two elements are deposited together.
In the Ce 1 cell, where the electrode potential difference was zero,
La which has a more negative electrode potential than Ce was
deposited in greater quantities than Ce. The Ln electrodeposits
often got detached from the electrode, because the Ln deposition
had a weak attachment to the Mo electrode. When an electrode-
posit fell to the bottom of the alumina tube, recovery and analysis of
the sample was very difficult. This detachment phenomenon was
more serious in the GdeLa binary cells than in the CeeLa binary
cells. Due to the difficulty in obtaining precise data, a range of the
codeposition ratios based on sample DA analysis was assigned to
each experimental cell.

The varied co-deposition ratios resulted from the complexity of
the electrochemical reaction (reduction) is reflected in the
observed cathode potentials. The measured codeposition ratios
were used label the data as normal (singular deposition) or off-
normal (co-deposition) to support the employment of machine
learning. Since it is possible to have a small amount of codeposition
due to high electrode current density at an early stage, the sample
was classified as normal when the codeposition ratio was very
small (less than 5%). The result of data labeling is shown in Table 3.
In total, the number of normal and off-normal data were 82 and
118, respectively.
5. Computational model development

In this section, the data preprocessing method and the approach
to ANN based model development are explained. In model devel-
opment, cathode potential data were preprocessed for use as input
data to address the quantity and quality issues in the raw data. In
the training of the computational model, transfer learning tech-
nique was used as a method of pre-training and fine-tuning. Firstly,
a model was pre-trained using singular La data and the binary
LaeCe data. Then, the pre-trained model was re-trained (fine-
tuned) using only normal LaeGd data. The retrained model was
tested to distinguish operation states from both normal and off-
normal LaeGd data.
ode potential data according to each electrochemical cell.

Cell Codeposition ratio: La/Gd The number of cathode potential data
(the number of DA result)

Gd 3 <1% 28 (16)
Gd 2 10e25% 27 (14)
Gd 1 100e300% 32 (24)
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5.1. DATA preprocessing

A key to using machine learning is to prepare appropriate data
in both quantity and quality. In the case of quantity, due to the
nature of machine learning, a large number of data are desired.
Through electrodeposition experiments, two hundred data of
cathode potential were collected, with each data point covering 10-
min interval. To increase sample size, the data covering each 10-
min interval were further divided into ten 1-min subinterval data.
Since the collected data are time-sequential and data slicing was
conducted sequentially, integrity and the features of the experi-
mental data were not compromised with data slicing. Fig. 3 shows
the cathode potential data (same as in Fig. 2) on a logarithmic scale.
The cathode potential decreased within the first 60 s and then
increased which signifies codeposition of two different elements.
This phenomenon has been observed in constant-current coul-
ometry where each variation corresponds to a specific reduction
potential [32]. The data from the first 1-min interval were discarded
to eliminate the effect of initial reactants reduction on the cathode
which is not related to the electrotransport related deposition in
the system.

The next step in data preprocessing was necessary to address
the data quality issue. As cathode potential represents the outcome
of various electrochemical reactions in the system, the measured
cathode potential value itself does not reveal some of the details
needed for the intended electrodeposition analysis. As a key
parameter in controlling the kinetics of the electrochemical re-
actions, changes in current density affect the electrodeposition rate.
For example, the cathode potential gradually increases during the
electrodeposition process as shown in the results. These increases
are due to the decrease in current density caused by increased
cathodic surface area.

Describing the effect of current density changes is considered in
the study by adding cathodic surface area to the input data. This is
by noting the interrelation between cathodic surface area and
current density. Under the given experimental setup, however,
performing direct measurement of cathodic surface area growth
was very difficult. In this study, indirectly representing cathodic
surface area growth by using a mathematical relationship given by
the Cottrell equation is utilized.

As shown below, the Cottrell equation describes the changes in
electric current as a function of time in a controlled potential
Fig. 3. A logarithmic scale graph of the cathode potential obtained in Ce 1 cell (0.9 wt%
CeCl3 and 9.0 wt% LaCl3) by applying 500 mA (the same with Fig. 2).
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experiment. The equation is valid when the applied potential is
constant and was derived by solving the linear diffusion equation
where diffusion governs the mass transfer [33].

i¼nFAC0
ffiffiffiffi

D
p

ffiffiffiffiffi

pt
p /AðtÞ ¼ i

ffiffiffiffiffi

pt
p

nFC0
ffiffiffiffi

D
p 2

The values of the variables, D (diffusion coefficient) and n (the
number of transferred electrons) were obtained from an experi-
mental study on the properties of the electrochemical cell under
the same conditions [26]. The equation assumes the electrode
surface area remains a constant, which can be valid for a very short-
term period. In this study, constant current was supplied for 10 min
during the electrodeposition experiments. We also noted that
during the 10 min interval, the corresponding potentials remained
at almost a constant level. Accordingly, the use of the Cottrell
equation to describe the changes in the surface area with electro-
deposition is expected to be acceptable within the given time in-
tervals. Then, the tendency for the time-dependent growth of
cathodic surface area is given by A(t) ¼ A0þat0.5 with the difference
in the growth rate of the cathodic surface area proportional to the
supplied current.

5.2. NEURAL network based classifier development

This study aims to examine whether it is possible to develop a
classifier to distinguish between normal and off-normal ER oper-
ation using the observations of cathode potential. At the same time,
given the sensitive nature of defining the specifics of what is off-
normal [28], devising and conducting experiments to obtain
comprehensive off-normal ER operation data is a challenge. We
attempted to develop such classifier by mainly focusing on using
normal data along with the use of limited off-normal data. To
support such implementation, we applied the transfer learning
approach to machine leaning algorithm development. Transfer
learning is a method that uses previous knowledge to solve a new
task [34]. If a computer model is capable of performing a given task,
it is expected that the model will also be able to conduct a similar
but different task as well. In transfer learning, most of the structure
of a pre-trained model (layers) is frozen and only a small portion of
the existing layers are retrained using a separate set of data.

Transfer learning is a machine learning (ML) method that focuses
on storing knowledge gained from solving one problem and
applying it to a related but different problem. Through transfer
learning, a model developed for a task is reused as a starting point
with an expectation that it will successfully conduct a similar sec-
ond task. The advantage of transfer learning is that it can achieve
higher accuracy using a small amount of data without requiring the
model development process starting from scratch. Thus, a number
of runs for trial-and-error optimization can be reduced by adjusting
the number of layers and nodes, regularization, and the learning
rate.

Transfer learning was utilized in pre-training and fine-tuning of
models. By pre-training a model and transferring its knowledge to
develop a new model, it is possible to extract features that are
common between the models. All of the data obtained from the La
singular cell and the CeeLa binary cell (54 normal data and 59 off-
normal data from N_La, N_Ce, and O_Ce) were used in model
development in pre-training (model A). Since 10 min data were
processed as 1 min data with 20 s interval, about 24 data were
produced from one cathode potential data. 70% of the data (1900
data) were used for training model A and the rest (800 data) were
used for model testing. Model Awas saved with its structure frozen
and then retrained (or fine-tuned) by adding normal data from
GdeLa binary system (28 data of N_Gd). The performance of the



Fig. 4. Model development procedure and structure of the developed models.
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fine-tuned model (model B) was tested by using off-normal data
from GdeLa binary system (59 data in O_Gd).

The reason why LaeCe data were used for pre-training was
because of smaller difference in standard reduction potential be-
tween La and Ce (DE ¼ 0.05 V) in comparison to the difference
between La and Gd (DE ¼ 0.08 V). By being able to classify a signal
that has small reduction potential differences between the ele-
ments, it would be easier to distinguish the signals produced by
elements having larger standard reduction potential differences
(i.e., U and Pu with DE ¼ 0.3 V).

In developing a classifier model through pre-training and fine-
tuning, this study employed a convolutional neural network
(CNN) to support the feature representation learning. A CNN serves
the purpose of filtering and captures specific features in the data by
repeating a convolution layer and a pooling layer. Therefore, CNN
allows extraction of important features with reduction in the input
dimensions.

Based on the features extracted from CNN, a classificationmodel
was developed using a recurrent neural network (RNN). A RNN
captures the sequential information present in the input data and
provides an algorithm to process the time sequential data (time-
series data) collected in the study. To find the most suitable
structure, this study also examined several types of RNN including
(a standard) RNN, long short-term memory (LSTM), and bidirec-
tional LSTM (Bi-LSTM). In case of (a standard) RNN, each node
(neuron) saves previous data in memory so as to relate them with
newly introduced data, and combine the data sequentially. How-
ever, as the time steps increase, data cannot be transferred effec-
tively. LSTM is a type of RNN that facilitates sequential data transfer
by adding a cell state as special units in addition to standard units of
RNN. Each node in LSTM is a memory cell consisting of an input
gate, an output gate, and a forget gate. Through these gates, the
amount of data used in learning is controlled. Accordingly, LSTM is
expected to show better performance than (a standard) RNN for
handling long sequential input. Bi-LSTM learns the time-sequential
data in two directions (past and future), therefore, is useful for
learning long term bi-directional dependency in sequential data.
However, in general, as computational steps become more
complicated, Bi-LSTM requires higher computing costs.

With the selected architectures, the models for classification
were developed by adjusting suitable hyper-parameters, including
the number of layers and nodes, learning rate, and batch size. The
models were optimized with respect to classification accuracy and
computation time by using optimization algorithms such as Adam,
SDG, and AMSGrad.

To determine the impact of the length of time data, the data
slicing interval (observation time) was varied between 2 and 3 min.
These variations, however, did not produce a discernible difference
in the results. Two different ways of using the cathode surface area
were also tested in model development with the data produced by
using the Cottrell equation: 1) to cover the entire time periods of
the electrodeposition; 2) to cover only the early electrodeposition
periods; and 3) not using the data at all. Using the cathodic surface
area only for the initial period of electrodeposition is based on
recognizing the difficulty in describing complex dendrite growth
behaviors in later period. This approach also assumes that use of
the cathodic surface area data during the initial fast growth period
may facilitate the learning of the model for the ensuing time
sequential data.

Based on model optimization, the RNN based model was
developed consisting of 4 layers of RNN having 256 nodes in each
layer. In the case of the LSTM and Bi-LSTM based models, both have
3 layers of LSTM or Bi-LSTM, with each layer consisting of 128
nodes. All three models used 2 layers of CNN for extracting features
from the input data. The softmax function was employed in the
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final layer of a neural network-based classifier. The overall concept
of model development procedure and structure of the developed
models is shown in Fig. 4.
6. Classification results and discussions

As explained, development of the classification models was
based on different uses of the cathodic surface area data. First,
when the cathodic surface area data are not used as input, none of
the models achieved more than 70% accuracy in pre-training. This
may indicate the importance of using the cathode surface area data
in developing a pre-trained model leading to an accurate fine-
tuned model. This also indicates that using only the cathode po-
tential data does not provide enough information necessary to
capture the trends in time-dependent changes of electrodeposition.
This also implies the necessity of taking into account the changes in
cathodic current density in describing the cathode potential.

When the cathodic surface area data was used in the pre-
training stage covering the entire time periods of the electrode-
position, the models achieved the accuracy level at lower than 80%.
After sequential fine-tuning, the models performed poorly (less
than or about 50% accuracy level). In contrast, when the cathodic
surface area data was used only for the initial electrodeposition
period, the models achieved more than 95% accuracy in pre-
training. After the fine-turning, the models with initial cathodic
surface area data also successfully classified off-normal data from
the test data set: The models using RNN and LSTM were more than
90% accurate and the Bi-LSTM based model achieved about 83%
accuracy. The standard deviation of test results (conducted five
times as part of fine-tuning of the models) were 3.9, 6.8, and 6.1 for
RNN, LSTM, and Bi-LSTM, respectively.

To improve the performance of the classifier models, “ensemble
averaging” was also applied to the developed models. The
ensemble average technique uses multiple evaluations in classifi-
cation and combines the results in final determination (off-normal
data vs. normal data). The results are summarized in Table 4.

The higher accuracy achieved with the use of the initial cathode
surface area data derived from the Cottrell equation indicates that
using such data directly contributes to classifying normal and off-
normal data in the study. However, the data derived from the
Cottrell equation for the entire periods of cathode area changes
were not found useful in the classification. This raises the question
of why second approach does not improve the classification accu-
racy. The answer may be due to the fact that the growth of cathode
surface area is stochastic and becomes increasingly complex with
time. Such random growth feature is due to various factors such as,
local differences in current distributions, reactant (electrolyte) fluid
flows, nonuniform dendrite formations, and fracture de-
velopments. Moreover, dendrite shape differs from element to
element with variations in element properties [25,35]. Given these
variations, the derived surface area value from the Cottrell equation



Table 4
Classification accuracy (%) of the developed models in distinguishing off-normal data.

Following sequential surface area Focusing initial rapid change

RNN LSTM Bi-LSTM RNN LSTM Bi-LSTM

Pre-training 65e70 75e80 75e80 >95% >95% >95%

Fine tuning 1 35.6 34.1 55.0 95.8 96.7 86.9
2 38.5 31.2 76.2 90.4 96.2 85.1
3 40.3 38.1 49.2 90.0 89.5 71.3
4 32.1 31.0 52.8 85.5 97.6 82.9
5 37.9 38.5 48.6 96.0 79.5 88.6

Average 36.9 34.6 56.3 91.5 91.9 82.9
Standard deviation 2.83 3.25 10.19 3.94 6.82 6.14
Ensemble 96.4 95.8 87.1
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at a given time is inherently limited in representing the actual
situation.

At an initial stage, electrodeposition occurs rather uniformly
since the electrode surfaces are smooth with the influence of local
variations at a minimum. In this case, the dendrite growth char-
acteristics may be controlled by the dominant features of the given
electrochemical system. Then, the cathodic surface area and the
corresponding current density represented by the Cottrell equation
were relevant to describe the electrodeposition behavior. However,
the similar data from the Cottrell equation in the later time periods
was incapable of explaining the electrodeposition behavior in the
cathode due to mounting complexities in random local condition
variations.

In this study, lanthanide elements were used as surrogates to
represent uranium and plutonium in electrorefining. As the
lanthanide elements have smaller differences in standard reduction
potentials, use of them facilitates the acquisition of codeposition
data in the experiment. In actual electrorefining environment,
however, codeposition of uranium and plutonium rarely occurs
because of their considerable differences in standard reduction
potentials. Nevertheless, developing the classification model by
using the surrogate elements serves the purpose of this study as the
surrogate data well represent the presence of normal or off-normal
data.

In terms of defining what is normal (singular deposition) and
off-normal (codeposition), the data in pre-training were classified
based on the value of the co-deposition ratio: When the codepo-
sition ratio (La/Ce or La/Gd) is less than 5%, the data were labeled as
normal data. Use of 5% as the criterion was partly to control the
amount of data in two groups in pre-training with balance. In fine-
tuning, the normal data was classified with less than 1% codepo-
sition ratio and the model was retrained by using only the normal
data. This resulted in a classifier model with performance accept-
able against all data including both normal and off-normal data.
Even though the data used in this study has limitations in repre-
senting the comprehensive scenarios of off-normal operations of
electrorefining, the result of this study indicate that the method-
ology presented is acceptable for the intended applications in nu-
clear safeguards, i.e., to compensate for the shortcomings of current
approaches.

With the ability to learn and retain time-sequential features of
the input data, use of the RNN series of architectures was found
appropriate to perform pre-training and fine-tuning of the classifier
model in the study. The ability of the RNN series of architectures in
pre-training the model and solving the second similar task (fine-
tuning stage) enabled classifier development using rather small
amount of data. It is expected that the model will be further
improvedwith availability of larger amount of data to represent the
electrorefining system.

This study showed the use of electrode potential data alongwith
RNN-based machine learning approach can support nuclear
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safeguards applications for electrorefining operations. However,
since the data used in the study are electric signals, they are
potentially vulnerable to manipulations. For instance, an operator
can induce a false potential by connecting an adjustable resistor.
However, in an actual facility, not only cathode potential but other
process signals, such as operating temperature and weight of
electrode, would be available to detect the occurrence of such un-
expected operations. In the case of temperature, the effect of
operating temperature on cathode potential is shown in the Nernst
equation (eqn. (1)). This indicates that the reliability of PM will
increase as long as the relevant data are available, making it very
difficult to create spoofing signals [28]. Also, with the increase in
the size of the data sets in monitored variables, more reliable ma-
chine learning techniques or architecture, such as deep learning,
would be applicable. Availability of such data can support the
design of facilities under the so-called “safeguards by design (SBD)”
approach. Through proper design and planning, the SBD approach
could provide reliable nuclear safeguards without requiring addi-
tional expense or installation of new equipment. Furthermore, the
approach can be applied not only to electrorefining but also to other
unit processes in the overall pyroprocessing facility.

Process monitoring is a supplemental technology supporting
mass balance-based safeguards approach. The traditional safe-
guards approach requires an inspector to visit the facility regularly.
By applying a reliable PM approach, it is possible to increase con-
fidence in the safeguards without requiring human presence. As a
result, it helps to reduce the frequency of inspections (saving
safeguards cost) and reduces false positive indications. Conse-
quently, it could lengthen the allowable inventory period in nuclear
safeguards, resulting in a reduced number of days of operation
shutdown.

7. Conclusions

Given the limitations in current approaches to pyroprocessing
safeguards, use of supplemental technology such as process
monitoring is needed. In this study, the feasibility of machine
learning based process monitoring was examined to develop a
novel safeguards approach for pyroprocessing. Cathode potential
obtained during electrorefining was selected as the target PM
signal. Depending on the electrodeposition status, the operation
states of electrorefining were defined as normal (for singular
deposition) and off-normal (for codeposition).

To support classification model development, cathode potential
data were measured through electrodeposition experiments in
three types of molten salt systems: La singular, LaeCe binary, and
LaeGd binary cells. The experimental cell compositions were var-
ied to provide favorable conditions for both singular deposition and
codeposition. The resulting electrodeposits were analyzed using
ICP-OES, and the data were labeled as normal and off-normal, ac-
cording to the codeposition ratio.
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In order to transform the data into proper inputs for machine
learning, preprocessing of the data were made. Preprocessing
included increasing the number of data points by time slicing,
discarding inappropriate data, and adding model based data
(cathode surface area) to reduce the effects of unknown features.
The concept of transfer learning was applied to pre-training and
fine-tuning of models. This approach allows a classifier to require
only normal data in development by pre-training. While the
acquisition of off-normal data is difficult to support nuclear safe-
guards applications, transfer learning helps classifier model
development in the presence of data limitations.

In the current study, a pre-trained model was developed by
using data from La singular and LaeCe binary cells on the basis of
standard reduction potentials of each element. The model was then
fine-tuned with only normal data from LaeGd binary cells. And the
classification accuracy was tested using off-normal data from
LaeGd binary cells.

In the model development, a convolution neural network (CNN)
was applied to extract features from the input data. A series of
recurrent neural network (RNN) architectures were also tried in
order to find the most appropriate model. Various trial-and-error
based methods were also employed to optimize the model. When
RNN and long-short termmemory (LSTM) architectures were used,
the models provided classification accuracy levels at higher than
95%.

In summary, this research indicates the feasibility of using
cathode potential measurement with machine learning to enhance
safeguards-ability of pyroprocessing during electrorefining. The
approach could also be expanded to other processes in pyropro-
cessing through process monitoring of relevant variables.
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