• 제목/요약/키워드: Machine Vision Algorithm

검색결과 262건 처리시간 0.025초

머신비젼 기반의 자율주행 차량을 위한 카메라 교정 (Camera Calibration for Machine Vision Based Autonomous Vehicles)

  • 이문규;안택진
    • 제어로봇시스템학회논문지
    • /
    • 제8권9호
    • /
    • pp.803-811
    • /
    • 2002
  • Machine vision systems are usually used to identify traffic lanes and then determine the steering angle of an autonomous vehicle in real time. The steering angle is calculated using a geometric model of various parameters including the orientation, position, and hardware specification of a camera in the machine vision system. To find the accurate values of the parameters, camera calibration is required. This paper presents a new camera-calibration algorithm using known traffic lane features, line thickness and lane width. The camera parameters considered are divided into two groups: Group I (the camera orientation, the uncertainty image scale factor, and the focal length) and Group II(the camera position). First, six control points are extracted from an image of two traffic lines and then eight nonlinear equations are generated based on the points. The least square method is used to find the estimates for the Group I parameters. Finally, values of the Group II parameters are determined using point correspondences between the image and its corresponding real world. Experimental results prove the feasibility of the proposed algorithm.

정확한 비전 검사를 위한 히스토그램 지정 기법 개발 (Histogram Specification Method Development for Accurate Visual Inspection)

  • 박세혁;강수민;한광희;허경무
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 학술대회 논문집 정보 및 제어부문
    • /
    • pp.145-146
    • /
    • 2008
  • The appearance inspection of various electronic products and parts has been executed by the eyesight of human. But inspection by eyesight cannot bring about uniform inspection result. Because the appearance inspection result by eyesight of human is changed by condition of physical and spirit of the checker. So machine vision inspection system is currently used to many appearance inspection fields instead of the checker. However the inspection result of machine vision is changed by the illumination of workplace. Therefore we proposed histogram specification in this paper for machine vision inspection accuracy. As a result of histogram specification algorithm, we could increase the exactness of visual inspection and prevent system error from physical and spirit condition of human. More specifically, average inspection error rate was 7.5[%] in existing inspection method but we could see 0.6[%] error rate after applying the algorithm which is presented in this paper.

  • PDF

자동차 프런트 샤시 모듈 측정을 위한 머신 비전 시스템 개발 (Development of the Machine Vision System for Inspection the Front-Chassis Module of an Automobile)

  • 이동목;이광일;양승한
    • 한국공작기계학회논문집
    • /
    • 제13권3호
    • /
    • pp.84-90
    • /
    • 2004
  • Today, automobile world market is highly competitive. In order to strengthen the competitiveness, quality of automobile is recognized as important and efforts are being made to improve the quality of manufactured components. The directional ability of automobile has influence on driver directly and hence it must be solved on the preferential basis. In the present research, an automated vision system has been developed to inspect the front chassis module. To interpret the inspection data obtained for front chassis module, new interpreting algorithm have been developed. Previously the control of tolerance of front chassis module was done manually. With the help of the new algorithm developed, the dimension is calculated automatically to check whether the front chassis module is within the tolerance limit or not.

자동차 프런트 샤시 모듈 측정을 위한 머신 비전 시스템 개발 (The development of the machine vision system to inspect the front-chassis module of an automobile)

  • 이동목;이광일;양승한
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2003년도 춘계학술대회 논문집
    • /
    • pp.245-250
    • /
    • 2003
  • Today, automobile world market is highly competitive. In order to strengthen the competitiveness, quality of automobile is recognized as important and efforts are being made to improve the quality of manufactured components. The directional ability of automobile has influenced on driver directly and hence it must be solved on the preferential basis. In the present research an automated vision system has been developed th inspect the front chassis module. To interpret the inspection data obtained for front chassis module, new interpreting algorithm have been developed. Previously the control of tolerance front chassis module was done manually. With the help of the new algorithm developed, the dimension is calculated automatically to check whether the front chassis module is within the tolerance limit or not.

  • PDF

머신 비전을 이용한 ALC 블록 생산공정의 자동 측정 시스템 개발 (Development of Automatic ALC Block Measurement System Using Machine Vision)

  • 엄주진;허경무
    • 제어로봇시스템학회논문지
    • /
    • 제10권6호
    • /
    • pp.494-500
    • /
    • 2004
  • This paper presents a machine vision system, which inspects the measurement of the ALC block on a real-time basis in the production process. The automatic measurement system was established with a CCD camera, an image grabber, and a personal computer without using assembled measurement equipment. Images obtained by this system was processed by an algorithm, specially designed for an enhanced measurement accuracy. For the realization of the proposed algorithm, a preprocessing method that can be applied to overcome uneven lighting environment, boundary decision method, unit length decision method in uneven condition with rocking objects, and a projection of region using pixel summation are developed. From our experimental results, we could find that the required measurement accuracy specification is sufficiently satisfied by using the proposed method.

비접촉 유리 두께 측정 장치 개발 (Developement of a System for Glass Thickness Measurement)

  • 박재범;이응석;이민기;이종근
    • 대한기계학회논문집A
    • /
    • 제33권5호
    • /
    • pp.529-535
    • /
    • 2009
  • This paper describes a measuring device of glass thickness using machine vision and image processing techniques on real-time. Today, the machine vision enable to inspect fast and exactly than human's eyes. The presented system has advantages of continuous measurement, flexibility and good accuracy. The system consists of a laser diode, a CCD camera with PC. The camera located on the opposite side of the incident beam measures the distance between two reflected laser beams from the glass top and bottom surface. We apply a binary algorithm to convert and analyze the image from camera to PC. Laser point coordination by border tracing algorithm is used to find the center of beam circle. The measured result was compared with micrometer and showed 0.002mm accuracy. Finally, the errors were discussed how to minimize the influence of glass wedge angle and angular error of moving stage.

비전 시스템의 성능개선을 위한 진동 적응 방법 (Vibration Adaptive Algorithm for Vision Systems)

  • 서갑호;윤성조;박정우;박성호;김대희;손동섭;서진호
    • 한국생산제조학회지
    • /
    • 제25권6호
    • /
    • pp.486-491
    • /
    • 2016
  • Disturbance/vibration reduction is critical in many applications using machine vision. The off-focusing or blurring error caused by vibration degrades the machine performance. In line with this, real-time disturbance estimation and avoidance are proposed in this study instead of going with a more familiar approach, such as the vibration absorber. The instantaneous motion caused by the disturbance is sensed by an attitude heading reference system module. A periodic vibration modeling is conducted to provide a better performance. The algorithm for vibration avoidance is described according to the vibration modeling. The vibration occurrence function is also proposed, and its parameters are determined using the genetic algorithm. The proposed algorithm is experimentally tested for its effectiveness in the vision inspection system.

머신 비젼을 이용한 2축 스테이지의 마이크로 원형 궤적 실시간 측정 및 분석 (Real-time Measurement and Analysis for Micro Circular Path of Two-Axes Stage Using Machine Vision)

  • 김주경;박종진;이응석
    • 대한기계학회논문집A
    • /
    • 제31권10호
    • /
    • pp.993-998
    • /
    • 2007
  • To verify the 2D or 3D positioning accuracy of a multi-axes stage is not easy, particularly, in the case the moving path of the stage is not linear. This paper is a study on a measuring method for the curved path accurately. A machine vision technique is used to trace the moving path of two-axes stage. To improve the accuracy of machine vision, a zoom lens is used for the 2D micro moving path. The accuracy of this method depends of the CCD resolution and array align accuracy with the zoom lens system. Also, a further study for software algorithm is required to increase the tracing speed. This technique will be useful to trace a small object in the 2D micro path in real-time accurately.

비전을 이용한 자동차 Support Hinge의 너트용접 검사 시스템 개발 (Development of Inspection System of Welded Nuts on Support Hinge using Machine Vision)

  • 김성민;이영춘;이성철
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.307-308
    • /
    • 2006
  • This paper is about the development of automatic inspection system of welded nuts on Support hinge using machine vision for the improvement of working condition. Until now, projection welding process was performed by operator. Also, inspection of welded nuts is performed manually and recorded by the operator's naked eye. So these processes caused the produce of poorly-made articles. To improve this manual operation, inspection system using machine vision is introduced. Test algorithm, lighting system and program showed good results to the designed inspection system and led to the increment of productivity.

  • PDF

Integrated Machine Vision을 이용한 LED Die Bonder 검사시스템 (LED Die Bonder Inspection System Using Integrated Machine Visions)

  • 조용규;하석재;김종수;조명우;최원호
    • 한국산학기술학회논문지
    • /
    • 제14권6호
    • /
    • pp.2624-2630
    • /
    • 2013
  • LED 칩 패키징에서 다이 본딩은 분할된 칩을 리드 프레임에 고정시켜 칩이 이후 공정을 견딜 수 있도록 충분한 강도를 제공하는 중요한 공정이다. 다이본딩 공정 중에서, 측정 단계는 정확한 에폭시 토출 위치 지정과 충분한 강도를 가지고 접합할 수 있도록 다이가 정확한 위치에 놓여있는지 상태를 결정하는데 있어 매우 중요하다. 본 연구에서는 LED 다이 본딩을 위한 머신 비전 기반의 측정 시스템을 개발하였다. 제안된 시스템에서 에폭시 토출과 어태칭 상태 검출을 위해 각각 2개의 카메라를 사용하였다. 제안된 측정 시스템에 새로운 비전 알고리즘을 적용하였고, 실험을 통해 본 알고리즘의 효율을 검증하였다. 비전 알고리즘을 이용하여 측정된 위치 오차는 $X:-29{\mu}m$, $Y:-32{\mu}m$, 회전오차는 3도 이내 인 것을 확인할 수 있었다. 결론적으로 제안된 머신 비전 기반의 측정 시스템을 통해 개발된 다이 본딩 시스템의 향상된 성능을 확인하였다.