• 제목/요약/키워드: Machine Security Vulnerabilities

검색결과 43건 처리시간 0.291초

Application Consideration of Machine Learning Techniques in Satellite Systems

  • Jin-keun Hong
    • International journal of advanced smart convergence
    • /
    • 제13권2호
    • /
    • pp.48-60
    • /
    • 2024
  • With the exponential growth of satellite data utilization, machine learning has become pivotal in enhancing innovation and cybersecurity in satellite systems. This paper investigates the role of machine learning techniques in identifying and mitigating vulnerabilities and code smells within satellite software. We explore satellite system architecture and survey applications like vulnerability analysis, source code refactoring, and security flaw detection, emphasizing feature extraction methodologies such as Abstract Syntax Trees (AST) and Control Flow Graphs (CFG). We present practical examples of feature extraction and training models using machine learning techniques like Random Forests, Support Vector Machines, and Gradient Boosting. Additionally, we review open-access satellite datasets and address prevalent code smells through systematic refactoring solutions. By integrating continuous code review and refactoring into satellite software development, this research aims to improve maintainability, scalability, and cybersecurity, providing novel insights for the advancement of satellite software development and security. The value of this paper lies in its focus on addressing the identification of vulnerabilities and resolution of code smells in satellite software. In terms of the authors' contributions, we detail methods for applying machine learning to identify potential vulnerabilities and code smells in satellite software. Furthermore, the study presents techniques for feature extraction and model training, utilizing Abstract Syntax Trees (AST) and Control Flow Graphs (CFG) to extract relevant features for machine learning training. Regarding the results, we discuss the analysis of vulnerabilities, the identification of code smells, maintenance, and security enhancement through practical examples. This underscores the significant improvement in the maintainability and scalability of satellite software through continuous code review and refactoring.

인공지능을 적용한 전력 시스템을 위한 보안 가이드라인 (Guideline on Security Measures and Implementation of Power System Utilizing AI Technology)

  • 최인지;장민해;최문석
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제6권4호
    • /
    • pp.399-404
    • /
    • 2020
  • There are many attempts to apply AI technology to diagnose facilities or improve the work efficiency of the power industry. The emergence of new machine learning technologies, such as deep learning, is accelerating the digital transformation of the power sector. The problem is that traditional power systems face security risks when adopting state-of-the-art AI systems. This adoption has convergence characteristics and reveals new cybersecurity threats and vulnerabilities to the power system. This paper deals with the security measures and implementations of the power system using machine learning. Through building a commercial facility operations forecasting system using machine learning technology utilizing power big data, this paper identifies and addresses security vulnerabilities that must compensated to protect customer information and power system safety. Furthermore, it provides security guidelines by generalizing security measures to be considered when applying AI.

code2vec 모델을 활용한 소스 코드 보안 취약점 탐지 (Detection of Source Code Security Vulnerabilities Using code2vec Model)

  • 양준혁;모지환;홍성문;도경구
    • 한국소프트웨어감정평가학회 논문지
    • /
    • 제16권2호
    • /
    • pp.45-52
    • /
    • 2020
  • 소스 코드의 보안 취약점을 탐지하는 전통적인 방법은 많은 시간과 노력을 필요로 한다. 만약 보안 취약점 유형들에 대한 좋은 품질의 데이터가 있다면, 이와 머신러닝 기술을 활용해 효과적으로 문제를 해결할 수 있을 것이다. 이에 본 논문은 정적 프로그램 분석에 머신러닝 기술을 활용하여 소스 코드에서 보안 취약점을 탐지하는 방법을 제시하고, 실험을 통하여 가능성을 보인다. 메소드 단위의 코드 조각의 의미를 해석하여 메소드의 이름을 예측하는 code2vec 모델을 사용하고, 모델을 생성하고 검증 및 평가를 하기 위한 데이터로 흔히 발생할 수 있는 보안 취약점을 모아놓은 Juliet Test Suite를 사용하였다. 모델 평가 결과 약 97.3%의 정밀도와 약 98.6%의 재현율로 매우 희망적인 결과를 확인하였고 오픈 소스 프로젝트의 취약점을 탐지함으로써 가능성을 보였다. 향후 연구를 통해 다른 취약점 유형과 다양한 언어로 작성된 소스 코드에 대해서 대응함으로써 기존의 분석 도구들을 대체할 수 있을 것이다.

기계학습 알고리즘을 이용한 소프트웨어 취약 여부 예측 시스템 (Software Vulnerability Prediction System Using Machine Learning Algorithm)

  • 최민준;김주환;윤주범
    • 정보보호학회논문지
    • /
    • 제28권3호
    • /
    • pp.635-642
    • /
    • 2018
  • 4차 산업혁명 시대에 우리는 소프트웨어 홍수 속에 살고 있다. 그러나, 소프트웨어의 증가는 필연적으로 소프트웨어 취약점 증가로 이어지고 있어 소프트웨어 취약점을 탐지 및 제거하는 작업이 중요하게 되었다. 현재까지 소프트웨어 취약 여부를 예측하는 연구가 진행되었지만, 탐지 시간이 오래 걸리거나, 예측 정확도가 높지 않았다. 따라서 본 논문에서는 기계학습 알고리즘을 이용하여 소프트웨어의 취약 여부를 효율적으로 예측하는 방법을 설명하며, 다양한 기계학습 알고리즘을 이용한 실험 결과를 비교한다. 실험 결과 k-Nearest Neighbors 예측 모델이 가장 높은 예측률을 보였다.

M2M 기기에서 스마트폰 및 차량 인증 기법 (Smart Phone and Vehicle Authentication Scheme with M2M Device)

  • 여성권;이근호
    • 한국융합학회논문지
    • /
    • 제2권4호
    • /
    • pp.1-7
    • /
    • 2011
  • IT의 발전으로 기기 간 통신을 이용하는 M2M 시장이 급성장하고 있으며, 많은 기업들이 M2M 사업에 참여하고 있다. 본 논문에서는 텔레매틱스의 개념 및 차량 네트워크 보안의 취약성을 알아보았다. 차량 및 IT 기술의 융합과 이동통신망 기술의 발전은 사용자에게 제공되는 서비스의 질은 향상 시켰지만, 이로 인한 보안 위협은 다양해졌다. 텔레매틱스 사업에서 이동통신사업자의 참여로 생성될 수 있는 새로운 비즈니스 모델을 제시하였으며, 이러한 환경에서 발생 될 수 있는 차량 이동통신망 보안 취약성을 분석하였다. 이 중 발생할 수 있는 취약성을 해결하기 위한 방법으로 M2M 기기와 스마트폰 및 차량 상호 인증 기법을 제시하였다.

신경망을 이용한 소프트웨어 취약 여부 예측 시스템 (Software Vulnerability Prediction System Using Neural Network)

  • 최민준;구동영;윤주범
    • 정보보호학회논문지
    • /
    • 제29권3호
    • /
    • pp.557-564
    • /
    • 2019
  • 소프트웨어의 증가에 따라 소프트웨어의 취약점도 함께 증가하고 있다. 다양한 소프트웨어는 다수의 취약점이 존재할 수 있으며 취약점을 통해 많은 피해를 받을 수 있기 때문에 빠르게 탐지하여 제거해야 한다. 현재 소프트웨어의 취약점을 발견하기 위해 다양한 연구가 진행되고 있지만, 수행 속도가 느리거나 예측 정확도가 높지 않다. 따라서 본 논문에서는 신경망 알고리즘을 이용하여 소프트웨어의 취약 여부를 효율적으로 예측하는 방법을 제안하며 나아가 기계학습 알고리즘을 이용한 기존의 시스템과 예측 정확도를 비교한다. 실험 결과 본 논문에서 제안하는 예측 시스템이 가장 높은 예측률을 보였다.

기계경비 취약점에 대한 개선방안 연구 (Study on the improvement of mechanical security system)

  • 안황권
    • 융합보안논문지
    • /
    • 제14권6_2호
    • /
    • pp.45-52
    • /
    • 2014
  • 현대에 이르러 우리나라의 경비 형태는 과거 인력 경비에 비해, 보다 효율적인 기계경비 형태로 발전하고 있다. 기계경비는 경제적, 운용적 측면에서 인력경비에 비해 그 장점을 가지고 있다. 하지만 기계경비에 사용되는 장비를 운용하는데 있어서 오경보 등과 같은 취약점이 발생하고 있으며, 이를 보완하기 위한 연구가 진행되고 있다. 이에 본 논문은 기계경비 운용상의 취약점에 대하여 AHP기법을 통하여 도출된 결과에 대한 개선방안을 제시하고자 한다.

Enhancing Internet of Things Security with Random Forest-Based Anomaly Detection

  • Ahmed Al Shihimi;Muhammad R Ahmed;Thirein Myo;Badar Al Baroomi
    • International Journal of Computer Science & Network Security
    • /
    • 제24권6호
    • /
    • pp.67-76
    • /
    • 2024
  • The Internet of Things (IoT) has revolutionized communication and device operation, but it has also brought significant security challenges. IoT networks are structured into four levels: devices, networks, applications, and services, each with specific security considerations. Personal Area Networks (PANs), Local Area Networks (LANs), and Wide Area Networks (WANs) are the three types of IoT networks, each with unique security requirements. Communication protocols such as Wi-Fi and Bluetooth, commonly used in IoT networks, are susceptible to vulnerabilities and require additional security measures. Apart from physical security, authentication, encryption, software vulnerabilities, DoS attacks, data privacy, and supply chain security pose significant challenges. Ensuring the security of IoT devices and the data they exchange is crucial. This paper utilizes the Random Forest Algorithm from machine learning to detect anomalous data in IoT devices. The dataset consists of environmental data (temperature and humidity) collected from IoT sensors in Oman. The Random Forest Algorithm is implemented and trained using Python, and the accuracy and results of the model are discussed, demonstrating the effectiveness of Random Forest for detecting IoT device data anomalies.

MalDC: Malicious Software Detection and Classification using Machine Learning

  • Moon, Jaewoong;Kim, Subin;Park, Jangyong;Lee, Jieun;Kim, Kyungshin;Song, Jaeseung
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제16권5호
    • /
    • pp.1466-1488
    • /
    • 2022
  • Recently, the importance and necessity of artificial intelligence (AI), especially machine learning, has been emphasized. In fact, studies are actively underway to solve complex and challenging problems through the use of AI systems, such as intelligent CCTVs, intelligent AI security systems, and AI surgical robots. Information security that involves analysis and response to security vulnerabilities of software is no exception to this and is recognized as one of the fields wherein significant results are expected when AI is applied. This is because the frequency of malware incidents is gradually increasing, and the available security technologies are limited with regard to the use of software security experts or source code analysis tools. We conducted a study on MalDC, a technique that converts malware into images using machine learning, MalDC showed good performance and was able to analyze and classify different types of malware. MalDC applies a preprocessing step to minimize the noise generated in the image conversion process and employs an image augmentation technique to reinforce the insufficient dataset, thus improving the accuracy of the malware classification. To verify the feasibility of our method, we tested the malware classification technique used by MalDC on a dataset provided by Microsoft and malware data collected by the Korea Internet & Security Agency (KISA). Consequently, an accuracy of 97% was achieved.

Improving Malicious Web Code Classification with Sequence by Machine Learning

  • Paik, Incheon
    • IEIE Transactions on Smart Processing and Computing
    • /
    • 제3권5호
    • /
    • pp.319-324
    • /
    • 2014
  • Web applications make life more convenient. Many web applications have several kinds of user input (e.g. personal information, a user's comment of commercial goods, etc.) for the activities. On the other hand, there are a range of vulnerabilities in the input functions of Web applications. Malicious actions can be attempted using the free accessibility of many web applications. Attacks by the exploitation of these input vulnerabilities can be achieved by injecting malicious web code; it enables one to perform a variety of illegal actions, such as SQL Injection Attacks (SQLIAs) and Cross Site Scripting (XSS). These actions come down to theft, replacing personal information, or phishing. The existing solutions use a parser for the code, are limited to fixed and very small patterns, and are difficult to adapt to variations. A machine learning method can give leverage to cover a far broader range of malicious web code and is easy to adapt to variations and changes. Therefore, this paper suggests the adaptable classification of malicious web code by machine learning approaches for detecting the exploitation user inputs. The approach usually identifies the "looks-like malicious" code for real malicious code. More detailed classification using sequence information is also introduced. The precision for the "looks-like malicious code" is 99% and for the precise classification with sequence is 90%.