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Abstract 

With the exponential growth of satellite data utilization, machine learning has become pivotal in enhancing 

innovation and cybersecurity in satellite systems. This paper investigates the role of machine learning 

techniques in identifying and mitigating vulnerabilities and code smells within satellite software. We explore 

satellite system architecture and survey applications like vulnerability analysis, source code refactoring, and 

security flaw detection, emphasizing feature extraction methodologies such as Abstract Syntax Trees (AST) 

and Control Flow Graphs (CFG). We present practical examples of feature extraction and training models 

using machine learning techniques like Random Forests, Support Vector Machines, and Gradient Boosting. 

Additionally, we review open-access satellite datasets and address prevalent code smells through systematic 

refactoring solutions. By integrating continuous code review and refactoring into satellite software 

development, this research aims to improve maintainability, scalability, and cybersecurity, providing novel 

insights for the advancement of satellite software development and security. 

The value of this paper lies in its focus on addressing the identification of vulnerabilities and resolution of 

code smells in satellite software. In terms of the authors' contributions, we detail methods for applying machine 

learning to identify potential vulnerabilities and code smells in satellite software. Furthermore, the study 

presents techniques for feature extraction and model training, utilizing Abstract Syntax Trees (AST) and 

Control Flow Graphs (CFG) to extract relevant features for machine learning training. Regarding the results, 

we discuss the analysis of vulnerabilities, the identification of code smells, maintenance, and security 

enhancement through practical examples. This underscores the significant improvement in the maintainability 

and scalability of satellite software through continuous code review and refactoring. 

 

Keywords: satellite, AST, CFG, smell, machine learning 

 

1. Introduction 

With the rapid advancements in satellite technology, the utilization of satellite data across various 

application domains has seen exponential growth globally. Satellite data, in particular, has brought about 

significant changes in the field of machine learning, accelerating innovation in satellite systems and data 
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processing.  

Machine learning techniques present new analytical methodologies and automated solutions within the 

complex environment of satellite systems, and they are extensively employed across domains ranging from 

cybersecurity to software quality enhancement. 

The architecture of a satellite system can be broadly classified into the ground segment, space segment, and 

user segment: 

Ground Segment: Comprises ground control centers, communication networks, data processing and storage 

systems, and user support devices. This segment is responsible for satellite operation and control and for 

processing and analyzing data collected from the satellites to provide it to end-users. 

Space Segment: Refers to the satellites in orbit and includes both the satellite bus and the payload. 

Satellite Bus: Manages the operation of the satellite itself, including power supply, attitude control, thermal 

regulation, and propulsion. 

Payload: Carries out mission-specific functions and includes observation sensors, communication devices, 

and data processing systems. 

User Segment: Refers to devices or organizations that directly utilize satellite data and play a role in 

delivering satellite information and services to end-users. 

Machine learning techniques have become indispensable tools in the satellite domain, applied in areas such 

as vulnerability analysis of satellite components, testing, source code refactoring, code smell detection, 

program understanding and synthesis, source code summarization, security flaw detection, feature-based 

learning, design pattern detection, and software quality analysis. In particular, cybersecurity in satellite systems 

has emerged as a significant issue, highlighted in U.S. cybersecurity strategies and policy research. Satellite 

systems play a pivotal role in national security, communications, navigation, and meteorological observation, 

and cybersecurity threats to these systems present serious challenges both nationally and globally. The security 

threats to satellite systems are complex and varied, with attack methods constantly evolving. 

This paper addresses the importance of cybersecurity in satellite systems, drawing on U.S. satellite 

cybersecurity strategies and policies as a foundation. Section 2 analyzes the machine learning techniques in 

satellite systems, while Section 3 introduces cases of code smells and refactoring in satellite system source 

code. Section 4 concludes the paper by suggesting future research directions, including security enhancement 

through the application of machine learning techniques in satellite systems, datasets, code smells, and 

refactoring. 

Through this research, we aim to provide novel insights into how machine learning techniques can be 

utilized to solve security challenges in satellite systems and contribute to the advancement of satellite software 

development and security fields. 

 

2. Machine Learning Techniques in the Satellite Systems 

2.1 Composition of Satellite System Software 

 The software architecture of a satellite system can be broadly divided into the following modules [1][2][3]: 

Satellite Operations Software: Software responsible for the operation of the satellite bus, including attitude 
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control, orbit maintenance, and power management. Typically developed as a real-time embedded system. 

Mission Software: Software that executes the functions of the payload, including sensor data collection, 

processing, compression, transmission, and communication device control. 

Ground Control Software: Software that manages satellite operations from ground control centers, handling 

command transmission, data reception, status monitoring, and orbit tracking. 

Data Processing Software: Software that processes and analyzes data received from the satellite, employing 

various data processing algorithms, including machine learning techniques. 

Security Software: Software designed to strengthen the cybersecurity of satellite systems, incorporating 

intrusion detection, authentication, encryption, and vulnerability analysis for satellite components and 

communication networks. 

The application of machine learning techniques in the satellite domain spans a variety of areas, including 

vulnerability analysis of satellite components, testing, source code refactoring, code smell detection, program 

understanding and synthesis, source code summarization, security flaw detection, feature-based learning, 

design pattern detection, and software quality analysis. These technologies have established themselves as 

critical tools for enhancing the efficiency and security of satellite systems. 

In particular, cybersecurity in satellite systems has emerged as a significant issue, as highlighted in U.S. 

cybersecurity strategy and policy research. Satellite systems play a pivotal role in national security, 

communications, navigation, and meteorological observation, and cybersecurity threats to these systems 

present serious challenges both nationally and globally. The security threats to satellite systems are complex 

and diverse, with attack methods continuously evolving 

 

2.2 Feature Training Techniques for Vulnerability in Satellite System 

In satellite systems, feature training techniques aim to identify vulnerabilities and malicious code patterns 

by understanding the structure and semantics of the source code. The initial step involves feature extraction 

using representations such as Abstract Syntax Trees (AST) or Control Flow Graphs (CFG). Subsequently, a 

vectorization process transforms the extracted features, which are then merged and fed into machine learning 

training models for prediction and evaluation. 

 

2.2.1 Feature Extraction 

Techniques used to identify vulnerabilities or code patterns include AST analysis, CFG analysis, and 

Natural Language Processing (NLP)-based embedding. 

AST Analysis: in AST analysis, the source code is first converted into an AST to identify structural features. 

The AST is then transformed into a vector, which serves as an input to the machine learning model. 

CFG Analysis: in CFG analysis, the source code's control flow is represented as a graph to understand the 

execution flow of the code. The CFG is subsequently converted into a vector to extract features. 

NLP-Based Embedding: in NLP-based embedding, the source code is treated as text, and techniques like 

Word2Vec, FastText, or BERT are employed for embedding. Word embeddings help comprehend the 

semantics of the code and facilitate feature extraction. 
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1) Feature Extraction from Satellite System Code Using AST 

For feature extraction using AST, a class named ASTFeatureExtractor() is required, which converts AST 

node types into strings to extract relevant characteristics from the source code. Here is a description of the 

feature extraction process: 

 class ASTFeatureExtractor(ast.NodeVisitor): 

    def __init__(self): 

In addition, the class requires the definition of a visit method. This method extracts node types as strings 

using node.__class__.__name__ and adds them to the features list. It also calls generic_visit to traverse each 

node. 

    def visit(self, node): 

Furthermore, the class requires the definition of the extract method. This method parses the source code 

into an AST and uses the visit method to extract node types, which are stored in the features list. The extracted 

node types are then returned as a space-separated string. 

    def extract(self, source_code): 

         

2) Feature Extraction from Satellite System Code Using CFG 

The core of feature extraction using CFG involves constructing a control flow graph from the source code 

and requires the definition of a CFGFeatureExtractor class. 

class CFGFeatureExtractor(ast.NodeVisitor): 

    """ 

    Build a CFG from source code and extract features. 

    """ 

Within the class, an __init__ method is defined to initialize the graph and the counter. 

def __init__(self): 

 

Within the class, an add_node method is defined to add nodes to the graph and return a unique ID 

def add_node(self, label): 

     

Within the class, an add_edge method is defined to add edges to the graph. 

    def add_edge(self, from_node, to_node): 

 

To provide a comprehensive implementation, it is included the visit_FunctionDef method, which adds 

function definition nodes to the control flow graph. 

def visit_FunctionDef(self, node): 
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To complete the CFGFeatureExtractor class, we'll also define the visit_If, visit_For, and visit_While 

methods to handle conditional statements and loop structures.      

def visit_If(self, node): 

    def visit_For(self, node): 

    def visit_While(self, node): 

 

To handle assignment statements, it is defined the visit_Assign method. 

    def visit_Assign(self, node): 

 

To include return statements, the visit_Return method is defined as well. 

    def visit_Return(self, node): 

Here's the CFGFeatureExtractor class with visit_Call methods defined. 

    def visit_Call(self, node): 

 To facilitate the complete parsing and graph construction process, it is defined a build method that will 

parse the source code into an AST and then call the appropriate visit methods to construct the control flow 

graph. Here's the CFGFeatureExtractor class with the build method. 

    def build (self, source_code): 

 

2.2.2 Vectorization Step for Extracted Features 

To transform features from the AST and CFG into vectors, the TfidfVectorizer is used. Term Frequency - 

Inverse Document Frequency(TF-IDF) combines two measures: 

TF : Measures how frequently a term appears in a document. 

IDF : Measures how rarely a term appears across all documents. 

 

By combining the indices of TF and IDF, weights are calculated and vectorized using TfidfVectorizer. 

vectorizer = TfidfVectorizer() 

 

The result is returned in the form of a sparse matrix, where most elements are '0'. This format minimizes 

memory usage by storing only non-zero elements and their indices. 

# Vectorization of AST and CFG features 

X_ast = vectorizer.fit_transform(ast_features) 

X_cfg = vectorizer.fit_transform(cfg_features) 

 

A sparse matrix efficiently stores only the non-zero elements and their indices, eliminating memory waste 

by not storing zero elements. The TF-IDF sparse representation can be illustrated as follows: 

TF-IDF Matrix (Sparse Representation): 

  (0, 6) 0.4697910006742352 

  (0, 7) 0.4697910006742352 

 



International Journal of Advanced Smart Convergence Vol.13 No.2 48-60 (2024)                                   53 

 

2.2.3 Merging Extracted Features 

To integrate features from both AST and CFG, the sparse matrices need to be combined. Using NumPy's 

hstack function, the AST and CFG features are merged. After converting the sparse matrices to dense arrays, 

the combination is achieved as follows: 

X_combined = np.hstack([X_ast.toarray(), X_cfg.toarray()])y = [0, 1] 

   

The merged feature matrix is then used as input for the machine learning model. 

 

2.2.4 Prediction and Evaluation in Machine Learning Model Training 

1) Training and Prediction Code: 

The labels are defined as 0 for normal code and 1 for vulnerable code: 

y = [0, 1] 

 

The data is split into training and testing sets using train_test_split: 

X_train_, X_test_, y_train_, y_test_ = train_test_split(X_combined, y, test_size=0.5,  

random_state=xx) 

 

A random forest classifier is then used to train and fit the model: 

model = RandomForestClassifier(n_estimators=100, random_state=xx) 

model.fit(X_train_, y_train_) 

 

Based on the trained model, predictions are made using the predict function: 

y_pred_ = model.predict(X_test_) 

 

2) Training Code for Machine Learning Models 

The training codes used for machine learning model training can be found in the following list of models 

[4]: 

models = { 

    "Logistic Regression": LogisticRegression(random_state=xx), 

    "Support Vector Machine": SVC (random_state=xx), 

    "Random Forest": RandomForestClassifier(n_estimators=100, random_state=xx), 

    "Gradient Boosting": GradientBoostingClassifier(n_estimators=100, 

 random_state=xx), 

    "K-Nearest Neighbors": KNeighborsClassifier(n_neighbors=xx), 

    "Multilayer Perceptron": MLPClassifier(hidden_layer_sizes=(100,), max_iter=500,  

random_state=xx), 

    "Decision Tree": DecisionTreeClassifier(random_state=xx), 

    "Naive Bayes": MultinomialNB() 

  

Logistic Regression: Logistic regression is used in satellite software for binary and multi-class classification 

tasks like anomaly detection and fault prediction. By using the sigmoid function, it estimates the probability 

of different error types. 
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Support Vector Machine (SVM): SVM models help classify data in satellite software, such as identifying 

communication anomalies. They seek the best decision boundary (hyperplane) between normal and anomalous 

data and can use linear, polynomial, RBF, and sigmoid kernels for both linear and non-linear problems [5]. 

Random Forest: Random forest models, which aggregate predictions from multiple decision trees, are used 

in satellite software for fault detection and data classification. They are robust against overfitting and provide 

insights into feature importance. 

Gradient Boosting: Gradient boosting combines weak learners to create strong classification models for 

detecting signal interference and predicting errors. Each learner improves upon the previous one, making it 

suitable for handling imbalanced data like rare faults. 

K-Nearest Neighbors (KNN): KNN is useful for classifying data anomalies and segmenting satellite 

imagery. It predicts new data classes based on the nearest neighbors' classes, using distance metrics to find the 

k closest neighbors. 

Multilayer Perceptron (MLP): MLP, a supervised learning model based on artificial neural networks, is 

effective for analyzing satellite sensor data and classifying signals. It uses hidden layers and backpropagation 

to learn complex, non-linear patterns. 

Decision Tree: Decision trees help diagnose faults and categorize components in satellite software by 

generating decision rules using a tree structure. They are easy to interpret but can overfit without careful 

pruning. 

Naive Bayes: Naive Bayes models are used in satellite software for classifying communication signals. 

They assume conditional independence among features and include variants like multinomial, Gaussian, and 

Bernoulli models. 

 

2.2.5 Prediction and Evaluation of Models 

In the classification evaluation phase of the trained models, metrics such as the confusion matrix, accuracy, 

and recall are used. 

 for name, model in models.items(): 

    model.fit(X_train, y_train_) 

    y_pred_ = model.predict(X_test_) 

    accuracy = accuracy_score(y_test_, y_pred_) 

 

In the classification evaluation stage of training models, the metric indicators used include the confusion 

matrix, Area Under Curve (AUC), accuracy, F- measures, precision, and Recall [5]. 

 

2.3 Open data sets based on Satellites System or making using Satellite Camera 

In recent years, the surge in availability of high-resolution satellite imagery has catalyzed significant 

advancements in remote sensing research. From monitoring wildfire dynamics to securing satellite 

communication, researchers are harnessing the power of these datasets to address pressing global challenges. 

This article presents two notable datasets that exemplify this trend: a comprehensive wildfire imagery dataset 

for segmentation and a robust dataset focused on identifying unique message headers from the Iridium satellite 

constellation. 

For, Landsat-8, Sentinel-1, and Sentinel-2 Satellite Imagery Dataset, Daniele Rege Cambrin and his 
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colleagues have curated an image dataset sourced from the California Department of Forestry and Fire 

Protection. Their research aims to semantically segment wildfire-affected areas, distinguishing between burned 

and unburned regions using binary classification. The Sentinel-2 dataset leverages computer vision techniques 

and satellite imagery to address the open problem of binary segmentation of burned regions. This dataset is 

composed of pre- and post-wildfire imagery from California wildfires dating back to 2015, obtained via 

Sentinel-2 L2A [6]. The dataset is publicly available at Hugging Face, and the source input data were collected 

from the Copernicus Open Access Hub using Sentinel-2 L2A. 

In another study, researchers present the SICKLE dataset, a multi-resolution time series dataset collected 

from Landsat-8, Sentinel-1, and Sentinel-2 satellites. This dataset encompasses time-series imagery taken from 

January 2018 to March 2021 [7]. 

For Iridium Message Header Dataset, Joshua Smailes and his team focus on the Iridium satellite 

constellation to collect a dataset of 1,705,202 messages [8]. They aim to train a fingerprint model, which 

combines a Siamese neural network with an autoencoder, for effective encoding and learning of message 

headers while preserving information identification. 

The researchers analyze temporal stability by considering the time gap between training and testing datasets, 

introducing transmitters that reflect this temporal change. The dataset and SatIQ machine learning code are 

publicly available (GitHub, Zenodo Record 1, Zenodo Record 2). In their dataset, they emphasize high sample 

rate data capture and the consistency of message headers across messages. 

Since each satellite shares identical transmitter hardware, distinguishing satellites requires identifying the 

subtle differences present from the time of manufacturing. By training machine learning models to recognize 

these variations, the team aims to differentiate between satellites. They store the IQ samples of message 

headers alongside the demodulated message bytes and decoded message contents. The decoded messages are 

used to label the data and generate a corresponding dataset of message headers. 

To collect training data, the researchers gathered one million messages over 23 days, with 872 messages 

per transmitter. They pre-process the data to remove channel noise and scale the waveforms. For training, 

validation, and testing, they apply a 90:5:5 split ratio, utilizing 50,000 messages for validation and testing each. 

Performance evaluation metrics include the Equal Error Rate (EER), which reflects the rate where False 

Positive Rate (FPR) equals False Negative Rate (FNR), and the AUC of the Receiver Operating Characteristic 

(ROC) curve. The study also examines the correlation between the distance between messages in the 

embedding space and the temporal gap between messages.  

For GNSS Satellite-Based ITS V2AIX Dataset, the V2AIX dataset encompasses a diverse set of real-world 

V2X messages, including the Cooperative Awareness Message (CAM) standardized by ETSI. The dataset 

comprises 230,000 V2X messages collected from 1,800 vehicles and roadside units involved in public road 

traffic, all adhering to the ETSI ITS message set. The dataset meticulously logs the geographical coordinates 

(longitude and latitude) measured via GNSS, with vehicle onboard units recording location data through both 

GNSS and INS systems [9]. 

These datasets, with their unique characteristics and high-quality annotations, provide an invaluable 

resource for the research community. Whether delineating wildfire boundaries or fingerprinting satellite 

message headers, these datasets empower researchers to develop innovative solutions that advance our 

understanding of the environment and enhance global security. By making these datasets openly accessible, 

the authors encourage further exploration and collaboration in these critical fields. 

 

https://github.com/ssloxford/SatIQ
https://zenodo.org/record/8220494
https://zenodo.org/record/8298532
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3. Smell and refactoring of source code in satellite system 

In satellite systems, source code often incorporates open-source components. However, not all open-source 

software in practical use is free of vulnerabilities or code smells. Thus, addressing code smell issues in satellite 

systems is imperative. The types of code smells that need to be considered include the following: 

Code smells indicate poor design decisions reflected in the software’s source code. They make software 

maintenance challenging and compromise its robustness.      

Examples of code smells include God Class, Long Method, Feature Envy, Spaghetti Code, Functional 

Decomposition, Data Class, Swiss Army Knife, Duplicated Code, Lazy Class, Long Parameter List, Message 

Chain, Anti-Singleton, Class Data Should Be Private, Complex Class, Refused Parent Bequest, Speculative 

Generality, Delegator, Middle Man, Switch Statement, and Large Class [1][4] [10-21]. 

Table 1 identifies prevalent code smells in satellite systems and provides targeted solutions: 

God Class: Split monolithic classes into smaller, specialized modules, like DataCapturer and DataProcessor. 

Long Method: Refactor lengthy methods into modular sub-methods, enhancing readability. 

Feature Envy: Move methods to the classes where the data is primarily located. 

Spaghetti Code: Refactor tangled code into clearly defined, modular components. 

Functional Decomposition: Decompose complex functions into meaningful sub-methods. 

Data Class: Add data manipulation methods directly within data classes. 

Swiss Army Knife: Divide multipurpose classes into specialized components. 

Duplicated Code: Consolidate duplicate code into reusable utility methods. 

Lazy Class: Merge redundant classes or remove them entirely. 

Long Parameter List: Use Data Transfer Objects (DTOs) to encapsulate parameter lists. 

Message Chain: Simplify long chains of calls by adding intermediate methods. 

Anti-Singleton: Properly implement the Singleton pattern or use a regular class. 

Class Data Should be Private: Make class data private and use getters/setters. 

Complex Class: Break down complex classes into manageable components. 

Refused Parent Bequest: Remove inheritance and create independent classes. 

Speculative Generality: Eliminate unused abstractions and simplify structures. 

Delegator: Eliminate unnecessary delegation and perform tasks directly. 

Middle Man: Remove middleman classes and directly interact with core components. 

Switch Statement: Replace switch statements with polymorphism. 

Large Class: Split large classes into smaller, modular components. 

 

Sim et al. investigate the vulnerabilities and defense models in satellite-based communication systems, 

focusing on countermeasures against attacks. They consider the key characteristics of satellites [22]. 

Also, Table 1 shows about solution cases of before and after smell for satellite system.  

 

Table 1. Cases of before and after smell for satellite system (Telemetry data processing). 

Items Smell Solution 

God class 
The TelemetryProcessor class 
contains all functions related to 
telemetry data management. 

Split the class into specialized components, 
such as TelemetryReader, 
TelemetryValidator, and 
TelemetryAnalyzer. 

Long method The process_telemetry() method Decompose process_telemetry() into 
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is too long, making it difficult to 
understand and maintain. 

smaller, self-contained sub-methods, such 
as read_data(), filter_data(), and 
validate_data(). 

Feature envy 
The analyze_data() method relies 
heavily on the SignalProcessor 
class. 

Move analyze_data() to the 
SignalProcessor class and add utility 
methods to simplify the telemetry analysis 
process. 

Spaghetti code 
The TelemetryProcessor class 
has tangled code, making it hard 
to follow. 

Modularize the class by refactoring into 
individual classes like TelemetryReader, 
TelemetryValidator, and 
TelemetryAnalyzer. 

Functional 
decomposition 

Functions in TelemetryProcessor 
lack logical decomposition, 
resulting in bloated methods. 

Break down methods into sub-methods like 
filter_data(), normalize_data(), and 
validate_data(). 

Data class 
The TelemetryData class only 
stores raw telemetry data without 
any associated methods. 

Add methods to manipulate telemetry data 
directly within the TelemetryData class. 

Swiss Army Knife 

The TelemetryHandler class 
handles diverse, unrelated 
functions such as data collection, 
processing, and transmission. 

Separate into specialized classes like 
TelemetryCollector, TelemetryProcessor, 
and TelemetryTransmitter. 

Duplicated code 
Code for data validation is 
duplicated across multiple parts of 
the telemetry system. 

Extract validation logic into a reusable utility 
class. 

Lazy class 
The SignalAnalyzer class has 
minimal functionality. 

Merge it with SignalProcessor or remove 
entirely. 

Long parameter 
The transmit_data() method in 
TelemetryTransmitter has too 
many parameters.. 

Group parameters into a single cohesive 
object, such as TransmissionConfig. 

Message chain 

The telemetry processing system 
involves excessively long 
message chains to pass data 
through multiple intermediary 
objects. 

Introduce a communication manager class 
that abstracts message details, reducing 
the chain complexity. 

Anti-singleton 

Singleton implementation for 
telemetry storage is either 
incorrect or unnecessary, 
resulting in tightly coupled 
dependencies. 

Implement the Singleton pattern properly, 
or convert to a regular class if Singleton is 
not required. 

Class data should 
be private 

Publicly accessible class data 
exposes telemetry data, signal 
parameters, and configuration 
settings directly. 

Encapsulate class data and provide 
getters/setters. 

Complex class 

The class complexity is too high, 
exemplified by a monolithic 
SatelliteControl class handling 
thermal regulation, power 
management, and attitude 
control. 

Split the class into smaller, specialized 
classes. 

Refused parent 
bequest 

Subclass inherits from a parent 
class but doesn’t utilize its 
properties or methods. 

Abandon inheritance and create an 
independent class if the base class isn't fully 
applicable. 

Speculative 
generality 

Unused generalized structures, 
such as redundant interfaces or 
abstract classes, are 
implemented unnecessarily. 

Remove unused abstract structures. 
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Delegator 
Excessive delegation without 
adding value, leading to 
unnecessary complexity. 

Refactor to directly perform data processing 
or signal filtering. 

Middle man 

An intermediary class provides 
minimal value and introduces 
redundant layers in data 
transmission. 

Remove the middle class and interact 
directly with the relevant class. 

Switch statement 
Switch statements are 
excessively used for telemetry 
processing types. 

Replace switch statements with 
polymorphism. 

Large class 
The class size is too large, 
encompassing data capture, 
processing, and transmission. 

Split the class into smaller, modular 
components based on functionality. 

   

 

In satellite systems, maintaining clean, efficient, and secure code is crucial for ensuring system reliability 

and performance. By proactively identifying and mitigating code smells through refactoring, developers can 

significantly improve the maintainability, robustness, and longevity of satellite system software. Thus, 

continuous code review and refactoring should be integral parts of the software development lifecycle in 

satellite systems. Addressing these code smells not only enhances the maintainability, readability, and 

efficiency of satellite system code but also ensures that the software remains robust and scalable for future 

developments. Refactoring is essential to building a reliable and sustainable satellite software ecosystem. 
 

4. Conclusions 

Addressing code smells in satellite source code through refactoring is essential for improving 

maintainability, readability, and efficiency, ultimately ensuring a more robust and scalable satellite software 

ecosystem. In conclusion, this research underscores the imperative of integrating continuous code review and 

refactoring into the software development lifecycle of satellite systems. Proactively addressing code smells 

not only improves the software's efficiency but also strengthens its resilience against future cybersecurity 

threats. By fostering collaboration and open access to high-quality datasets, the research community can drive 

significant advancements in satellite software development and security. Ultimately, leveraging machine 

learning techniques for cybersecurity challenges in satellite systems will pave the way for a more secure, 

innovative, and sustainable future in satellite technology. 
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