
International Journal of Advanced Smart Convergence Vol.13 No.2 48-60 (2024)

http://dx.doi.org/10.7236/IJASC.2024.13.2.48

Copyright© 2024 by The Institute of Internet, Broadcasting and Communication. This is an Open Access article distributed under the terms of

the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0)

Application Consideration of Machine Learning Techniques in Satellite Systems

Jin-keun Hong

Professor, Division of Advanced IT, Baekseok University, Korea
E-mail jkhong@bu.ac.kr

Abstract

With the exponential growth of satellite data utilization, machine learning has become pivotal in enhancing

innovation and cybersecurity in satellite systems. This paper investigates the role of machine learning

techniques in identifying and mitigating vulnerabilities and code smells within satellite software. We explore

satellite system architecture and survey applications like vulnerability analysis, source code refactoring, and

security flaw detection, emphasizing feature extraction methodologies such as Abstract Syntax Trees (AST)

and Control Flow Graphs (CFG). We present practical examples of feature extraction and training models

using machine learning techniques like Random Forests, Support Vector Machines, and Gradient Boosting.

Additionally, we review open-access satellite datasets and address prevalent code smells through systematic

refactoring solutions. By integrating continuous code review and refactoring into satellite software

development, this research aims to improve maintainability, scalability, and cybersecurity, providing novel

insights for the advancement of satellite software development and security.

The value of this paper lies in its focus on addressing the identification of vulnerabilities and resolution of

code smells in satellite software. In terms of the authors' contributions, we detail methods for applying machine

learning to identify potential vulnerabilities and code smells in satellite software. Furthermore, the study

presents techniques for feature extraction and model training, utilizing Abstract Syntax Trees (AST) and

Control Flow Graphs (CFG) to extract relevant features for machine learning training. Regarding the results,

we discuss the analysis of vulnerabilities, the identification of code smells, maintenance, and security

enhancement through practical examples. This underscores the significant improvement in the maintainability

and scalability of satellite software through continuous code review and refactoring.

Keywords: satellite, AST, CFG, smell, machine learning

1. Introduction

With the rapid advancements in satellite technology, the utilization of satellite data across various

application domains has seen exponential growth globally. Satellite data, in particular, has brought about

significant changes in the field of machine learning, accelerating innovation in satellite systems and data

IJASC 24-2-7

Manuscript Received: April. 15, 2024 / Revised: April. 21, 2024 / Accepted: April. 26, 2024

Corresponding Author: jkhong@bu.ac.kr

Tel: +82-41-550-2445, Fax: +82-41-550-9027

Professor, Division of Advanced IT, Baekseok University, Korea)

mailto:jkhong@bu.ac.kr

International Journal of Advanced Smart Convergence Vol.13 No.2 48-60 (2024) 49

processing.

Machine learning techniques present new analytical methodologies and automated solutions within the

complex environment of satellite systems, and they are extensively employed across domains ranging from

cybersecurity to software quality enhancement.

The architecture of a satellite system can be broadly classified into the ground segment, space segment, and

user segment:

Ground Segment: Comprises ground control centers, communication networks, data processing and storage

systems, and user support devices. This segment is responsible for satellite operation and control and for

processing and analyzing data collected from the satellites to provide it to end-users.

Space Segment: Refers to the satellites in orbit and includes both the satellite bus and the payload.

Satellite Bus: Manages the operation of the satellite itself, including power supply, attitude control, thermal

regulation, and propulsion.

Payload: Carries out mission-specific functions and includes observation sensors, communication devices,

and data processing systems.

User Segment: Refers to devices or organizations that directly utilize satellite data and play a role in

delivering satellite information and services to end-users.

Machine learning techniques have become indispensable tools in the satellite domain, applied in areas such

as vulnerability analysis of satellite components, testing, source code refactoring, code smell detection,

program understanding and synthesis, source code summarization, security flaw detection, feature-based

learning, design pattern detection, and software quality analysis. In particular, cybersecurity in satellite systems

has emerged as a significant issue, highlighted in U.S. cybersecurity strategies and policy research. Satellite

systems play a pivotal role in national security, communications, navigation, and meteorological observation,

and cybersecurity threats to these systems present serious challenges both nationally and globally. The security

threats to satellite systems are complex and varied, with attack methods constantly evolving.

This paper addresses the importance of cybersecurity in satellite systems, drawing on U.S. satellite

cybersecurity strategies and policies as a foundation. Section 2 analyzes the machine learning techniques in

satellite systems, while Section 3 introduces cases of code smells and refactoring in satellite system source

code. Section 4 concludes the paper by suggesting future research directions, including security enhancement

through the application of machine learning techniques in satellite systems, datasets, code smells, and

refactoring.

Through this research, we aim to provide novel insights into how machine learning techniques can be

utilized to solve security challenges in satellite systems and contribute to the advancement of satellite software

development and security fields.

2. Machine Learning Techniques in the Satellite Systems

2.1 Composition of Satellite System Software

 The software architecture of a satellite system can be broadly divided into the following modules [1][2][3]:

Satellite Operations Software: Software responsible for the operation of the satellite bus, including attitude

50 Application Consideration of Machine Learning Techniques in Satellite Systems

control, orbit maintenance, and power management. Typically developed as a real-time embedded system.

Mission Software: Software that executes the functions of the payload, including sensor data collection,

processing, compression, transmission, and communication device control.

Ground Control Software: Software that manages satellite operations from ground control centers, handling

command transmission, data reception, status monitoring, and orbit tracking.

Data Processing Software: Software that processes and analyzes data received from the satellite, employing

various data processing algorithms, including machine learning techniques.

Security Software: Software designed to strengthen the cybersecurity of satellite systems, incorporating

intrusion detection, authentication, encryption, and vulnerability analysis for satellite components and

communication networks.

The application of machine learning techniques in the satellite domain spans a variety of areas, including

vulnerability analysis of satellite components, testing, source code refactoring, code smell detection, program

understanding and synthesis, source code summarization, security flaw detection, feature-based learning,

design pattern detection, and software quality analysis. These technologies have established themselves as

critical tools for enhancing the efficiency and security of satellite systems.

In particular, cybersecurity in satellite systems has emerged as a significant issue, as highlighted in U.S.

cybersecurity strategy and policy research. Satellite systems play a pivotal role in national security,

communications, navigation, and meteorological observation, and cybersecurity threats to these systems

present serious challenges both nationally and globally. The security threats to satellite systems are complex

and diverse, with attack methods continuously evolving

2.2 Feature Training Techniques for Vulnerability in Satellite System

In satellite systems, feature training techniques aim to identify vulnerabilities and malicious code patterns

by understanding the structure and semantics of the source code. The initial step involves feature extraction

using representations such as Abstract Syntax Trees (AST) or Control Flow Graphs (CFG). Subsequently, a

vectorization process transforms the extracted features, which are then merged and fed into machine learning

training models for prediction and evaluation.

2.2.1 Feature Extraction

Techniques used to identify vulnerabilities or code patterns include AST analysis, CFG analysis, and

Natural Language Processing (NLP)-based embedding.

AST Analysis: in AST analysis, the source code is first converted into an AST to identify structural features.

The AST is then transformed into a vector, which serves as an input to the machine learning model.

CFG Analysis: in CFG analysis, the source code's control flow is represented as a graph to understand the

execution flow of the code. The CFG is subsequently converted into a vector to extract features.

NLP-Based Embedding: in NLP-based embedding, the source code is treated as text, and techniques like

Word2Vec, FastText, or BERT are employed for embedding. Word embeddings help comprehend the

semantics of the code and facilitate feature extraction.

International Journal of Advanced Smart Convergence Vol.13 No.2 48-60 (2024) 51

1) Feature Extraction from Satellite System Code Using AST

For feature extraction using AST, a class named ASTFeatureExtractor() is required, which converts AST

node types into strings to extract relevant characteristics from the source code. Here is a description of the

feature extraction process:

 class ASTFeatureExtractor(ast.NodeVisitor):

 def __init__(self):

In addition, the class requires the definition of a visit method. This method extracts node types as strings

using node.__class__.__name__ and adds them to the features list. It also calls generic_visit to traverse each

node.

 def visit(self, node):

Furthermore, the class requires the definition of the extract method. This method parses the source code

into an AST and uses the visit method to extract node types, which are stored in the features list. The extracted

node types are then returned as a space-separated string.

 def extract(self, source_code):

2) Feature Extraction from Satellite System Code Using CFG

The core of feature extraction using CFG involves constructing a control flow graph from the source code

and requires the definition of a CFGFeatureExtractor class.

class CFGFeatureExtractor(ast.NodeVisitor):

 """

 Build a CFG from source code and extract features.

 """

Within the class, an __init__ method is defined to initialize the graph and the counter.

def __init__(self):

Within the class, an add_node method is defined to add nodes to the graph and return a unique ID

def add_node(self, label):

Within the class, an add_edge method is defined to add edges to the graph.

 def add_edge(self, from_node, to_node):

To provide a comprehensive implementation, it is included the visit_FunctionDef method, which adds

function definition nodes to the control flow graph.

def visit_FunctionDef(self, node):

52 Application Consideration of Machine Learning Techniques in Satellite Systems

To complete the CFGFeatureExtractor class, we'll also define the visit_If, visit_For, and visit_While

methods to handle conditional statements and loop structures.

def visit_If(self, node):

 def visit_For(self, node):

 def visit_While(self, node):

To handle assignment statements, it is defined the visit_Assign method.

 def visit_Assign(self, node):

To include return statements, the visit_Return method is defined as well.

 def visit_Return(self, node):

Here's the CFGFeatureExtractor class with visit_Call methods defined.

 def visit_Call(self, node):

 To facilitate the complete parsing and graph construction process, it is defined a build method that will

parse the source code into an AST and then call the appropriate visit methods to construct the control flow

graph. Here's the CFGFeatureExtractor class with the build method.

 def build (self, source_code):

2.2.2 Vectorization Step for Extracted Features

To transform features from the AST and CFG into vectors, the TfidfVectorizer is used. Term Frequency -

Inverse Document Frequency(TF-IDF) combines two measures:

TF : Measures how frequently a term appears in a document.

IDF : Measures how rarely a term appears across all documents.

By combining the indices of TF and IDF, weights are calculated and vectorized using TfidfVectorizer.

vectorizer = TfidfVectorizer()

The result is returned in the form of a sparse matrix, where most elements are '0'. This format minimizes

memory usage by storing only non-zero elements and their indices.

Vectorization of AST and CFG features

X_ast = vectorizer.fit_transform(ast_features)

X_cfg = vectorizer.fit_transform(cfg_features)

A sparse matrix efficiently stores only the non-zero elements and their indices, eliminating memory waste

by not storing zero elements. The TF-IDF sparse representation can be illustrated as follows:

TF-IDF Matrix (Sparse Representation):

 (0, 6) 0.4697910006742352

 (0, 7) 0.4697910006742352

International Journal of Advanced Smart Convergence Vol.13 No.2 48-60 (2024) 53

2.2.3 Merging Extracted Features

To integrate features from both AST and CFG, the sparse matrices need to be combined. Using NumPy's

hstack function, the AST and CFG features are merged. After converting the sparse matrices to dense arrays,

the combination is achieved as follows:

X_combined = np.hstack([X_ast.toarray(), X_cfg.toarray()])y = [0, 1]

The merged feature matrix is then used as input for the machine learning model.

2.2.4 Prediction and Evaluation in Machine Learning Model Training

1) Training and Prediction Code:

The labels are defined as 0 for normal code and 1 for vulnerable code:

y = [0, 1]

The data is split into training and testing sets using train_test_split:

X_train_, X_test_, y_train_, y_test_ = train_test_split(X_combined, y, test_size=0.5,

random_state=xx)

A random forest classifier is then used to train and fit the model:

model = RandomForestClassifier(n_estimators=100, random_state=xx)

model.fit(X_train_, y_train_)

Based on the trained model, predictions are made using the predict function:

y_pred_ = model.predict(X_test_)

2) Training Code for Machine Learning Models

The training codes used for machine learning model training can be found in the following list of models

[4]:

models = {

 "Logistic Regression": LogisticRegression(random_state=xx),

 "Support Vector Machine": SVC (random_state=xx),

 "Random Forest": RandomForestClassifier(n_estimators=100, random_state=xx),

 "Gradient Boosting": GradientBoostingClassifier(n_estimators=100,

 random_state=xx),

 "K-Nearest Neighbors": KNeighborsClassifier(n_neighbors=xx),

 "Multilayer Perceptron": MLPClassifier(hidden_layer_sizes=(100,), max_iter=500,

random_state=xx),

 "Decision Tree": DecisionTreeClassifier(random_state=xx),

 "Naive Bayes": MultinomialNB()

Logistic Regression: Logistic regression is used in satellite software for binary and multi-class classification

tasks like anomaly detection and fault prediction. By using the sigmoid function, it estimates the probability

of different error types.

54 Application Consideration of Machine Learning Techniques in Satellite Systems

Support Vector Machine (SVM): SVM models help classify data in satellite software, such as identifying

communication anomalies. They seek the best decision boundary (hyperplane) between normal and anomalous

data and can use linear, polynomial, RBF, and sigmoid kernels for both linear and non-linear problems [5].

Random Forest: Random forest models, which aggregate predictions from multiple decision trees, are used

in satellite software for fault detection and data classification. They are robust against overfitting and provide

insights into feature importance.

Gradient Boosting: Gradient boosting combines weak learners to create strong classification models for

detecting signal interference and predicting errors. Each learner improves upon the previous one, making it

suitable for handling imbalanced data like rare faults.

K-Nearest Neighbors (KNN): KNN is useful for classifying data anomalies and segmenting satellite

imagery. It predicts new data classes based on the nearest neighbors' classes, using distance metrics to find the

k closest neighbors.

Multilayer Perceptron (MLP): MLP, a supervised learning model based on artificial neural networks, is

effective for analyzing satellite sensor data and classifying signals. It uses hidden layers and backpropagation

to learn complex, non-linear patterns.

Decision Tree: Decision trees help diagnose faults and categorize components in satellite software by

generating decision rules using a tree structure. They are easy to interpret but can overfit without careful

pruning.

Naive Bayes: Naive Bayes models are used in satellite software for classifying communication signals.

They assume conditional independence among features and include variants like multinomial, Gaussian, and

Bernoulli models.

2.2.5 Prediction and Evaluation of Models

In the classification evaluation phase of the trained models, metrics such as the confusion matrix, accuracy,

and recall are used.

 for name, model in models.items():

 model.fit(X_train, y_train_)

 y_pred_ = model.predict(X_test_)

 accuracy = accuracy_score(y_test_, y_pred_)

In the classification evaluation stage of training models, the metric indicators used include the confusion

matrix, Area Under Curve (AUC), accuracy, F- measures, precision, and Recall [5].

2.3 Open data sets based on Satellites System or making using Satellite Camera

In recent years, the surge in availability of high-resolution satellite imagery has catalyzed significant

advancements in remote sensing research. From monitoring wildfire dynamics to securing satellite

communication, researchers are harnessing the power of these datasets to address pressing global challenges.

This article presents two notable datasets that exemplify this trend: a comprehensive wildfire imagery dataset

for segmentation and a robust dataset focused on identifying unique message headers from the Iridium satellite

constellation.

For, Landsat-8, Sentinel-1, and Sentinel-2 Satellite Imagery Dataset, Daniele Rege Cambrin and his

International Journal of Advanced Smart Convergence Vol.13 No.2 48-60 (2024) 55

colleagues have curated an image dataset sourced from the California Department of Forestry and Fire

Protection. Their research aims to semantically segment wildfire-affected areas, distinguishing between burned

and unburned regions using binary classification. The Sentinel-2 dataset leverages computer vision techniques

and satellite imagery to address the open problem of binary segmentation of burned regions. This dataset is

composed of pre- and post-wildfire imagery from California wildfires dating back to 2015, obtained via

Sentinel-2 L2A [6]. The dataset is publicly available at Hugging Face, and the source input data were collected

from the Copernicus Open Access Hub using Sentinel-2 L2A.

In another study, researchers present the SICKLE dataset, a multi-resolution time series dataset collected

from Landsat-8, Sentinel-1, and Sentinel-2 satellites. This dataset encompasses time-series imagery taken from

January 2018 to March 2021 [7].

For Iridium Message Header Dataset, Joshua Smailes and his team focus on the Iridium satellite

constellation to collect a dataset of 1,705,202 messages [8]. They aim to train a fingerprint model, which

combines a Siamese neural network with an autoencoder, for effective encoding and learning of message

headers while preserving information identification.

The researchers analyze temporal stability by considering the time gap between training and testing datasets,

introducing transmitters that reflect this temporal change. The dataset and SatIQ machine learning code are

publicly available (GitHub, Zenodo Record 1, Zenodo Record 2). In their dataset, they emphasize high sample

rate data capture and the consistency of message headers across messages.

Since each satellite shares identical transmitter hardware, distinguishing satellites requires identifying the

subtle differences present from the time of manufacturing. By training machine learning models to recognize

these variations, the team aims to differentiate between satellites. They store the IQ samples of message

headers alongside the demodulated message bytes and decoded message contents. The decoded messages are

used to label the data and generate a corresponding dataset of message headers.

To collect training data, the researchers gathered one million messages over 23 days, with 872 messages

per transmitter. They pre-process the data to remove channel noise and scale the waveforms. For training,

validation, and testing, they apply a 90:5:5 split ratio, utilizing 50,000 messages for validation and testing each.

Performance evaluation metrics include the Equal Error Rate (EER), which reflects the rate where False

Positive Rate (FPR) equals False Negative Rate (FNR), and the AUC of the Receiver Operating Characteristic

(ROC) curve. The study also examines the correlation between the distance between messages in the

embedding space and the temporal gap between messages.

For GNSS Satellite-Based ITS V2AIX Dataset, the V2AIX dataset encompasses a diverse set of real-world

V2X messages, including the Cooperative Awareness Message (CAM) standardized by ETSI. The dataset

comprises 230,000 V2X messages collected from 1,800 vehicles and roadside units involved in public road

traffic, all adhering to the ETSI ITS message set. The dataset meticulously logs the geographical coordinates

(longitude and latitude) measured via GNSS, with vehicle onboard units recording location data through both

GNSS and INS systems [9].

These datasets, with their unique characteristics and high-quality annotations, provide an invaluable

resource for the research community. Whether delineating wildfire boundaries or fingerprinting satellite

message headers, these datasets empower researchers to develop innovative solutions that advance our

understanding of the environment and enhance global security. By making these datasets openly accessible,

the authors encourage further exploration and collaboration in these critical fields.

https://github.com/ssloxford/SatIQ
https://zenodo.org/record/8220494
https://zenodo.org/record/8298532

56 Application Consideration of Machine Learning Techniques in Satellite Systems

3. Smell and refactoring of source code in satellite system

In satellite systems, source code often incorporates open-source components. However, not all open-source

software in practical use is free of vulnerabilities or code smells. Thus, addressing code smell issues in satellite

systems is imperative. The types of code smells that need to be considered include the following:

Code smells indicate poor design decisions reflected in the software’s source code. They make software

maintenance challenging and compromise its robustness.

Examples of code smells include God Class, Long Method, Feature Envy, Spaghetti Code, Functional

Decomposition, Data Class, Swiss Army Knife, Duplicated Code, Lazy Class, Long Parameter List, Message

Chain, Anti-Singleton, Class Data Should Be Private, Complex Class, Refused Parent Bequest, Speculative

Generality, Delegator, Middle Man, Switch Statement, and Large Class [1][4] [10-21].

Table 1 identifies prevalent code smells in satellite systems and provides targeted solutions:

God Class: Split monolithic classes into smaller, specialized modules, like DataCapturer and DataProcessor.

Long Method: Refactor lengthy methods into modular sub-methods, enhancing readability.

Feature Envy: Move methods to the classes where the data is primarily located.

Spaghetti Code: Refactor tangled code into clearly defined, modular components.

Functional Decomposition: Decompose complex functions into meaningful sub-methods.

Data Class: Add data manipulation methods directly within data classes.

Swiss Army Knife: Divide multipurpose classes into specialized components.

Duplicated Code: Consolidate duplicate code into reusable utility methods.

Lazy Class: Merge redundant classes or remove them entirely.

Long Parameter List: Use Data Transfer Objects (DTOs) to encapsulate parameter lists.

Message Chain: Simplify long chains of calls by adding intermediate methods.

Anti-Singleton: Properly implement the Singleton pattern or use a regular class.

Class Data Should be Private: Make class data private and use getters/setters.

Complex Class: Break down complex classes into manageable components.

Refused Parent Bequest: Remove inheritance and create independent classes.

Speculative Generality: Eliminate unused abstractions and simplify structures.

Delegator: Eliminate unnecessary delegation and perform tasks directly.

Middle Man: Remove middleman classes and directly interact with core components.

Switch Statement: Replace switch statements with polymorphism.

Large Class: Split large classes into smaller, modular components.

Sim et al. investigate the vulnerabilities and defense models in satellite-based communication systems,

focusing on countermeasures against attacks. They consider the key characteristics of satellites [22].

Also, Table 1 shows about solution cases of before and after smell for satellite system.

Table 1. Cases of before and after smell for satellite system (Telemetry data processing).

Items Smell Solution

God class
The TelemetryProcessor class
contains all functions related to
telemetry data management.

Split the class into specialized components,
such as TelemetryReader,
TelemetryValidator, and
TelemetryAnalyzer.

Long method The process_telemetry() method Decompose process_telemetry() into

International Journal of Advanced Smart Convergence Vol.13 No.2 48-60 (2024) 57

is too long, making it difficult to
understand and maintain.

smaller, self-contained sub-methods, such
as read_data(), filter_data(), and
validate_data().

Feature envy
The analyze_data() method relies
heavily on the SignalProcessor
class.

Move analyze_data() to the
SignalProcessor class and add utility
methods to simplify the telemetry analysis
process.

Spaghetti code
The TelemetryProcessor class
has tangled code, making it hard
to follow.

Modularize the class by refactoring into
individual classes like TelemetryReader,
TelemetryValidator, and
TelemetryAnalyzer.

Functional
decomposition

Functions in TelemetryProcessor
lack logical decomposition,
resulting in bloated methods.

Break down methods into sub-methods like
filter_data(), normalize_data(), and
validate_data().

Data class
The TelemetryData class only
stores raw telemetry data without
any associated methods.

Add methods to manipulate telemetry data
directly within the TelemetryData class.

Swiss Army Knife

The TelemetryHandler class
handles diverse, unrelated
functions such as data collection,
processing, and transmission.

Separate into specialized classes like
TelemetryCollector, TelemetryProcessor,
and TelemetryTransmitter.

Duplicated code
Code for data validation is
duplicated across multiple parts of
the telemetry system.

Extract validation logic into a reusable utility
class.

Lazy class
The SignalAnalyzer class has
minimal functionality.

Merge it with SignalProcessor or remove
entirely.

Long parameter
The transmit_data() method in
TelemetryTransmitter has too
many parameters..

Group parameters into a single cohesive
object, such as TransmissionConfig.

Message chain

The telemetry processing system
involves excessively long
message chains to pass data
through multiple intermediary
objects.

Introduce a communication manager class
that abstracts message details, reducing
the chain complexity.

Anti-singleton

Singleton implementation for
telemetry storage is either
incorrect or unnecessary,
resulting in tightly coupled
dependencies.

Implement the Singleton pattern properly,
or convert to a regular class if Singleton is
not required.

Class data should
be private

Publicly accessible class data
exposes telemetry data, signal
parameters, and configuration
settings directly.

Encapsulate class data and provide
getters/setters.

Complex class

The class complexity is too high,
exemplified by a monolithic
SatelliteControl class handling
thermal regulation, power
management, and attitude
control.

Split the class into smaller, specialized
classes.

Refused parent
bequest

Subclass inherits from a parent
class but doesn’t utilize its
properties or methods.

Abandon inheritance and create an
independent class if the base class isn't fully
applicable.

Speculative
generality

Unused generalized structures,
such as redundant interfaces or
abstract classes, are
implemented unnecessarily.

Remove unused abstract structures.

58 Application Consideration of Machine Learning Techniques in Satellite Systems

Delegator
Excessive delegation without
adding value, leading to
unnecessary complexity.

Refactor to directly perform data processing
or signal filtering.

Middle man

An intermediary class provides
minimal value and introduces
redundant layers in data
transmission.

Remove the middle class and interact
directly with the relevant class.

Switch statement
Switch statements are
excessively used for telemetry
processing types.

Replace switch statements with
polymorphism.

Large class
The class size is too large,
encompassing data capture,
processing, and transmission.

Split the class into smaller, modular
components based on functionality.

In satellite systems, maintaining clean, efficient, and secure code is crucial for ensuring system reliability

and performance. By proactively identifying and mitigating code smells through refactoring, developers can

significantly improve the maintainability, robustness, and longevity of satellite system software. Thus,

continuous code review and refactoring should be integral parts of the software development lifecycle in

satellite systems. Addressing these code smells not only enhances the maintainability, readability, and

efficiency of satellite system code but also ensures that the software remains robust and scalable for future

developments. Refactoring is essential to building a reliable and sustainable satellite software ecosystem.

4. Conclusions

Addressing code smells in satellite source code through refactoring is essential for improving

maintainability, readability, and efficiency, ultimately ensuring a more robust and scalable satellite software

ecosystem. In conclusion, this research underscores the imperative of integrating continuous code review and

refactoring into the software development lifecycle of satellite systems. Proactively addressing code smells

not only improves the software's efficiency but also strengthens its resilience against future cybersecurity

threats. By fostering collaboration and open access to high-quality datasets, the research community can drive

significant advancements in satellite software development and security. Ultimately, leveraging machine

learning techniques for cybersecurity challenges in satellite systems will pave the way for a more secure,

innovative, and sustainable future in satellite technology.

Acknowledgement

 This work was supported by funding at Baekseok University in 2024.

References

[1] T. Liu, C. Sun, and Y. Zhang, “Load Balancing Routing Algorithm of Low-Orbit Communication Satellite

Network Traffic Based on Machine Learning,” Wireless Communications and Mobile Computing, pp. 1-

14, 2021. DOI: https://doi.org/10.1155/2021/3234390.

[2] B. H. Choi, Y. -J. Song, and J. -H. Won, “Design of a KPS Civil Signal Candidate Simulator Using a

Fully-Reconfigurable GNSS Signal Generator,” in Proc of IPNT Conference, pp. 23-27, Nov 2-4, 2022.

http://ipnt.or.kr/2022proc/14.

[3] NASA Advanced Supercomputing (NAS) Division, Open Source Software, [Internet] cited 2024 May 08, Available

from: https://www.nas.nasa.gov/software/software.html.

International Journal of Advanced Smart Convergence Vol.13 No.2 48-60 (2024) 59

[4] Alazba and H. Aljamaan, “Code smell detection using feature selection and stacking ensemble,” Empirical

investigation, Information and Software Technology, Vol. 138, pp. 106648, 2021. DOI:

https://doi.org/10.1016/j.infsof.2021.106648.

[5] V. Markovic, Z. Jakovljevic, and Z. Miljkovic, “Feature sensitive three-dimensional point cloud

simplification using support vector regression,” Tehnički vjesnik, Vol. 26, pp. 985-994, 2019. DOI:

https://doi.org/10.17559/TV-20180328175336.

[6] D. R. Cambrin, L. Colomba, and P. Graza, “CaBuAir: California Burned Areas dataset for delineation,”

IEEE Geoscience and Remote Sensing Magazine, Vol. 11, pp. 106-113, 2024. DOI:

https://doi.org/10.48550/arXiv.2401.11519.

[7] Sani, D., Mahato, S., Saini, S., Agarwal, H. K., and C. C. Devshali, “ SICKLE: A Multi-Sensor Satellite Imagery

Dataset Annotated with Multiple Key Cropping Parameters,” WACV [Internet] cited 2024 May 08, Available from:

https://sites.google.com/iiitd.ac.in/sickle/home

[8] J. Smailes, S. Kohler, S. Birnbach, M. Strohmeier, and I. Martinovic, “Watch This Space: Securing

Satellite Communication through Resilient Transmitter Fingerprinting,” in Proc of CCS’23, pp.1-14, Nov

26-30, 2023. [Internet], cited 2024 May 08, Available from: https://arxiv.org/pdf/2305.06947.

[9] Kueppers, G., Busch, J. P., Reiher, L., & Eckstein, L. 2024, V2AIX: A Multi-Modal Real-World Dataset of ETSI ITS

V2X Messages in Public Road Traffic, [Internet], cited 2024 May 08, Available from:

https://arxiv.org/html/2403.10221v1.

[10] F. A. Fontana, M. V. Mantyla, M. Zanoni, and A. Marino, “Comparing and experimenting machine

learning techniques for code smell detection,” Empirical Software Engineering, Vol. 21, pp. 1143-1191,

2016. DOI: https://doi.org/10.1007/s10664-015-9378-4.

[11] A. Kaur, S. Jain, and S. Goel, “Sp-j48: a novel optimization and machine-learning-based approach for

solving complex problems, special application in software engineering for detecting code smell,” Neural

Computing Application, Vol. 32, pp. 7009-7027, 2020. DOI: https://doi.org/10.1007/s00521-019-04175-

z.

[12] F. A. Fontana and M. Zanoni, “Code smell severity classification using machine learning techniques,”

Knowledge-Based System, Vol.128, pp. 43-58, 2017. DOI: https://doi.org/10.1016/j.knosys.2017.04.014

[13] M. I. Azeem, F. Palomba, L. Shi, and Q. Wang, Q, “Machine Learning Techniques for Code Smell

Detection, A Systematic Literature Review and Meta-Analysis,” Information & Software Technology, Vol.

18, pp. 115-138, 2019. DOI: DOI: https://doi.org/10.1016/j.infsof.2018.12.009.

[14] A. Jesudoss and S. Maneesha, “Identification of code smell using machine learning,” in Proc of

International Conference Intelligence Computing Control Syst. (ICCS), pp.54-58, 2019. DOI:

https://doi.org/10.1109/ICCS45141.2019.9065317.

[15] T. Lin, X. Fu, F. Chen, and L. Li, “A novel approach for code smell detection based on deep leaning,”

EAI International Conference on Applied Cryptography in Computer and Communications, Springer, pp.

171-174, 2021. DOI: DOI: https://doi.org/10.1007/978-3-030-80851-8_16.

[16] D. Cruz, A. Santana, and E. Figueiredo, “Detecting bad smell with machine learning algorithms: an

empirical study,” in Proc of the 3rd International Conference on Technical Debt., pp.31-40, 2022.

https://doi.org/10.1145/3387906.3388618.

[17] S. Wang, Y. Zhang, and J. Sun, “Detection of bad smell in code based on bp neural network,” Computer

Engineering, Vol. 46, pp. 216-222, 2021. DOI: https://doi.org/10.1117/12.2561197.

[18] F. Pecorelli, Di Palomba, D. Di Nucci, D., and A. De Lucia, “Comparing heuristic and machine learning

approaches for metric-based code smell detection,” in Proc of IEEE/ACM 27th International Conference

https://doi.org/10.1109/ICCS45141.2019.9065317

60 Application Consideration of Machine Learning Techniques in Satellite Systems

on Program Comprehension (ICPC), pp. 25-26 May 2019. DOI:

https://doi.org/10.1109/ICPC.2019.00023.

[19] B. H. Choi, Y. -J. Song, and J. -H. Won, “Design of a KPS Civil Signal Candidate Simulator Using a

Fully-Reconfigurable GNSS Signal Generator,” in Proc of IPNT Conference, pp. 23-27, Nov 2-4, 2022.

http://ipnt.or.kr/2022proc/14.

[20] N. Maneerat and P. Muenchaisri, “Bad-smell prediction from software design model using machine

learning techniques,” in Proc of Eighth International Joint Conference on Computer Science and Software

Engineering (JCSSE), pp. 331-336, May 2011. DOI: https://doi.org/10.1109/JCSSE.2011.5930143.

[21] J. Wang, J. Chen, and J. Gao, “Ecc multi-label code smell detection method based on ranking loss,”

Journal of Computer Research and Development, Vol. 58, pp. 178-188, 2021. DOI:

https://doi.org/10.7544/issn1000-1239.2021.20190836.

[22] I. Sim, J. Jeong, S. Yun, Y. Lim, and J. Seo, “A Survey for Vulnerability Attack and Defense Method of

Satellite-Link Based Communication System,” International Journal of Internet, Broadcasting and

Communication, Vol. 15, No. 4, pp. 128-133, 2023. http://doig.org/10.7236/IJIBC.2023.15.4.128.

https://doi.org/10.1109/JCSSE.2011.5930143

