ATM is element that reliability, stability is important in relation with customer by financial agency used device. To embody high reliability and stability, reliability estimation technology development is important. When new product is developed, performance and reliability evaluation of product are essential element. In this paper, is treating contents on reliability estimation of stepping motor, BLDC motor and solenoid that is main driving source of note handling units.
기존 환경측정기기는 전자파 및 친환경 제품 인증, 내구성 시험 위주이며, 센서 신뢰성 검증 및 측정 데이터에 대한 검증은 형식 승인 및 등록, 인수시험, 초기교정, 주기시험 등을 통해 센서 성능평가 위주로 수행된다. 본 플랫폼은 각 타겟 센서별 성능평가 뿐만 아니라 센서의 데이터 신뢰성에 대한 검증체계 지원 ICT 기반 환경 모니터링 센서 신뢰성 검증 체계를 구축하였다. 환경 정보에 대한 센서 데이터를 수집할 센서보드를 제작하였고 센서 및 데이터 신뢰성 평가 및 검증 서비스 체계를 규격화 하였다. 또한, ICT 기반 센서 데이터 신뢰성 평가 및 검증을 위해 LoRa 통신을 이용한 센서 데이터 플랫폼 모니터링 프로토타입을 제작하였고 이를 스마트 시티 등에 실증 테스트하였다. 해당 시스템을 통해 받은 데이터 분석을 위해 머신러닝을 이용하여 최적화 알고리즘 개발하였다. 이를 통해 신뢰성 검증을 위한 센서 빅데이터 분석시스템을 구축하였고 통합 평가 및 검증 시스템의 기반을 마련하였다.
The demands of the large scale machine tools, for instance, such as planomiller, turning machine, boring machine, NC machine, have been gradually increased in recent years. As the performances of machine tools and/or cutting tools are advanced, it is possible to perform high-speed and high-precision cutting works. The effective treatment of wet chip, which is discharged from cutting works, becomes very important problems. Therefore, this study is forced on the design of large scale machine tools using CATIA V5R18 and analysis of cutter, which is considered as essential equipment in large scale machine tools, using MSC.Nastran & MSC.Patran. Especially, the relations between tolerated load of cutter, driving horse power and rpm of driving shaft in chip processing system are investigated through analysis. As the results, the reliability of design could be improved by evaluating simulated numerical values, it showed that tolerated loads of supported part and edged part of cutter are 87,000N and 14,450N, respectively.
In this paper, studies on application cases of machine condition monitoring using oil sensors are reviewed. Owing to rapid industrial advancements, maintenance strategies play a crucial role in reducing the cost of downtime and improving system reliability. Consequently, machine condition monitoring plays an important role in maintaining operation stability and extending the period of usage for various machines. Machine condition monitoring through oil analysis is an effective method for assessing a machine's condition and providing early warnings regarding a machine's breakdown or failure. Among the three prevalent methods, the online analysis method is predominantly employed because this method incorporates oil sensors in real-time and has several advantages (such as prevention of human errors). Wear debris sensors are widely employed for implementing machine condition monitoring through oil sensors. Furthermore, various types of oil sensors are used in different machines and systems. Integrated oil sensors that can measure various oil attributes by incorporating a single sensor are becoming popular. By monitoring wear debris, machine condition monitoring using oil sensors is implemented for engines, automotive transmission, tanks, armored vehicles, and construction equipment. Additionally, such monitoring systems are incorporated in aircrafts such as passenger airplanes, fighter airplanes, and helicopters. Such monitoring systems are also employed in chemical plants and power plants for managing overall safety. Furthermore, widespread application of oil condition diagnosis requires the development of diagnostic programs.
The flow from developing a machine learning model to deploying it in a production environment suffers challenges. Efficient and reliable deployment is critical for realizing the true value of machine learning models. Bridging this gap between development and publication has become a pivotal concern in the machine learning community. FastAPI, a modern and fast web framework for building APIs with Python, has gained substantial popularity for its speed, ease of use, and asynchronous capabilities. This paper focused on leveraging FastAPI for deploying machine learning models, addressing the potentials associated with integration, scalability, and performance in a production setting. In this work, we explored the seamless integration of machine learning models into FastAPI applications, enabling real-time predictions and showing a possibility of scaling up for a more diverse range of use cases. We discussed the intricacies of integrating popular machine learning frameworks with FastAPI, ensuring smooth interactions between data processing, model inference, and API responses. This study focused on elucidating the integration of machine learning models into production environments using FastAPI, exploring its capabilities, features, and best practices. We delved into the potential of FastAPI in providing a robust and efficient solution for deploying machine learning systems, handling real-time predictions, managing input/output data, and ensuring optimal performance and reliability.
Integrated condition monitoring is required to monitor effectively the machine conditions since machine failures could not be monitored accurately by any single measurement parameter. Application of various condition monitoring techniques is therefore preferred in many cases in order to diagnosis the machine condition. However it inevitably requires lots of maintenance cost and sometimes it could be proved to over-maintenance unnecessarily. This could happen especially when one measurement parameter closely correlates to another. Therefore correlation analysis of various monitoring parameters has to be performed to improve the reliability of diagnosis. In this work, Pearson correlation coefficient was used to analyze the correlation between condition monitoring parameters of an over-loaded machine system where the vibration, wear and temperature were monitored simultaneously. The result showed that Pearson correlation coefficient could be regarded as a good measure for evaluating the availability of condition monitoring technology.
International Journal of Precision Engineering and Manufacturing
/
제8권1호
/
pp.32-37
/
2007
The outer diameter finishing grinding process required for ferrules, which are widely used as fiber optic connectors, is carried out by high-precision centerless grinding machines. In this study, the thermal characteristics of such a machine, for example, the temperature distribution, temperature rise, and thermal deformation, were estimated based on a virtual prototype and the heat generation rates of heat sources related to normal operating conditions. The prototype consisted of a concrete-filled bed. hydrostatic grinding wheel (GW) and regulating wheel (RW) spindle systems, a hydrostatic RW feed mechanism, a RW swivel mechanism, and on-machine GW and RW dressers. The reliability of the predicted results was demonstrated using temperature characteristics measured from a physical prototype. The predicted and measured results indicated that this particular high-precision centerless grinding machine had very stable thermal characteristics.
Recently, the machine tools called multi-task machines, which mounted rotary axes on the table or spindle are used increasingly. Accordingly, multi-task machine tool takes a growing interest on the motion accuracy of feed drive system. In this study, measurement and diagnosis of motion errors ware attempted from circular pattern obtained by using DBB (Double ball bar) device. Those were obtained at both clockwise and counter clockwise motions in mutually perpendicularly intersecting three planes. The reliability of error measurement system for multi-task machine tool was verified by the direct test cutting.
Recently, the machine tools called multi-task machines, which mounted rotary axes on the table or spindle are used increasingly. Accordingly, multi-task machine tool takes a growing interest on the motion accuracy of feed drive system. In this study, measurement and diagnosis of motion errors ware attempted from circular pattern obtained by using DBB (Double ball bar) device. Those were obtained at both clockwise and counter clockwise motions in mutually perpendicularly intersecting three planes. The reliability of error measurement system for multi-task machine tool was verified by the direct test cutting.
In this paper, an OMM (On-the-Machine Measuring) system has been developed, which can perform measuring and inspection of sculptured surfaces of die and mold, by use of a scanning-type touch probe mounted into the spindle of a NC machine. The calibration procedures of a scanning prove (SP2-1, Renishaw) and an algorithm for measuring surface points by a ball-nosed stylus have been studied. The system has been developed based on commercial CAM software (Z-Master 2000), and tested through measuring a plastic injection molding-die. Also some experimental results of the calibration and measuring for given surface positions are analyzed to verify its accuracy and reliability.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.