• Title/Summary/Keyword: MVCT

Search Result 36, Processing Time 0.024 seconds

Analysis on Setup Variation According to Megavoltage Computed Tomography System

  • Kim, Sun-Yung;Kim, Hwa-Sun;Lee, Hae-Kag
    • Journal of Magnetics
    • /
    • v.21 no.3
    • /
    • pp.425-430
    • /
    • 2016
  • The aim of this study was to measure the setup variation for X (lateral), Y (longitude), and Z (vertical) by taking magnetic megavoltage computed tomography (MVCT) before treating the brain, oropharynx, lung, and prostate patients on helical tomotherapy. In this study, 30 patients were chosen for each of the treatment areas, and their skin was labeled with a mark on a treatment planning reference point when taking CT. We preceded MVCT prior to tomotherapy and then conducted an auto registration based on the bony landmarks; image registration was used for automatically matching the patient's setup. Lastly, we confirmed and evaluated the translation coordinates of the images for 30 patients. The following shows the comparison result of the setup errors of each part: X (lateral) showed the highest setup errors with $3.44{\pm}2.05$ from Lung; Y (longitude) showed the highest setup errors showing $3.40{\pm}2.87mm$ from Prostate; and Z (vertical) showed the highest setup errors showing $6.62{\pm}4.38mm$ from Lung. This result verifies that the setup error can be prevented by taking MVCT before the treatment, and Planning Target Volume (PTV) margins can be reduced by referring to the resulting value of each treatment part. Ultimately, the dosage of the normal organs can be decreased as well as any side effects.

Assessment of inter- and intra-fractional volume of bladder and body contour by mega-voltage computed tomography in helical tomotherapy for pelvic malignancy

  • Kim, Sunghyun;You, Sei Hwan;Eum, Young Ju
    • Radiation Oncology Journal
    • /
    • v.36 no.3
    • /
    • pp.235-240
    • /
    • 2018
  • Purpose: We describe the daily bladder volume change observed by mega-voltage computed tomography (MVCT) during pelvic radiotherapy with potential predictors of increased bladder volume variations. Materials and Methods: For 41 patients who received pelvic area irradiation, the volumes of bladder and pelvic body contour were measured twice a day with pre- and post-irradiation MVCT from the 1st to the 10th fraction. The median prescription dose was 20 Gy (range, 18 to 30 Gy) up to a 10th fraction. The upper and lower margin of MVCT scanning was consistent during the daily treatments. The median age was 69 years (range, 33 to 86 years) and 10 patients (24.4%) were treated postoperatively. Results: Overall bladder volume on planning computed tomography was 139.7 ± 92.8 mL. Generally, post-irradiation bladder volume (POSTBV) was larger than pre-irradiation bladder volume (PREBV) (p < 0.001). The mean PREBV and POSTBV was reduced after 10 fraction treatments by 21.3% (p = 0.028) and 25.4% (p = 0.007), respectively. The MVCT-scanned body contour volumes had a tendency to decrease as the treatment sessions progressed (p = 0.043 at the 8th fraction and p = 0.044 at the 10th fraction). There was a statistically significant correlation between bladder filling time and PREBV (p = 0.001). Conclusion: Daily MVCT-based bladder volume assessment was feasible both intra- and inter-fractionally.

Experiences of the First 130 Patients in Gangnam Severance Hospital (강남세브란스병원 토모테라피를 이용한 치료환자의 130예 통계분석 및 경험)

  • Ha, Jin-Sook;Jeon, Mi-Jin;Kim, Sei-Joon;Kim, Jong-Dae;Shin, Dong-Bong
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.20 no.1
    • /
    • pp.45-53
    • /
    • 2008
  • Purpose: We are trying to analyze 130 patients' conditions by using our Helical Tomotherapy, which was installed in our center in Oct. 2007. We will be statistically approach this examination and analyze so that we will be able to figure out adaptive plans according to the change in place of the tumor, GTV (gross tumor volume), total amount of time it took, vector (${\upsilon}=\surd$x2+y2+z2) and the change in size of the tumor. Materials and Methods: Objectives were the patients who were medicated with Tomotherapy in our medical center since Oct. 2007 August 2008. The Average age of the patients were 53 years old (Minimum 25 years old, Maximum 83 years old). The parts of the body we operated were could be categorized as Head&neck (n=22), Chest (n=47), Abdomen (n=25), Pelvis (n=11), Bone (n=25). MVCT had acted on 2702 times, and also had acted on our adaptive plan toward patients who showed big difference in the size of tumor. Also, after equalizing our gained MVCT and kv-CT we checked up on the range of possible mistake, using x, y, z, roll and vector. We've also investigated on Set-up, MVCT, average time of operation and target volume. Results: Mean time on table was 22.8 minutes. Mean treatment time was 13.26 minutes. Mean correction (mm) was X=-0.7, Y=-1.4, Z=5.77, roll=0.29, vector=8.66 Head&neck patients had 2.96 mm less vector value in movement than patients of Chest, Abdomen, Bone. In increasing order, Head&neck, Bone, Abdomen, Chest, Pelvis showed the vector value in movement. Also, there were 27 patients for adaptive plan, 39 patients, who had long or multiple tumor. We could know that When medical treatment is one cure plan, it takes 32 minutes, and when medical treatment is two cure plan, it takes 40 minutes that one medical treatment takes 21 minutes, and the other medical treatment takes 19 minutes. Conclusion:With our basic tools, we could bring more accurate IMRT with MVCT. Also, through our daily image, we checked up on the change in tumor so that adaptive plan could work. It was made it possible to take the cure of long or multiple tumor, the cure in a nearby OAR, and the complicated cure that should make changes of gradient dose distribution.

  • PDF

Treatment Margin Assessment using Mega-Voltage Computed Tomography of a Tomotherapy Unit in the Radiotherapy of a Liver Tumor (간종양 방사선치료 시 토모테라피 메가볼트 CT를 이용한 치료 여백 평가)

  • You, Sei-Hwan;Seong, Jin-Sil;Lee, Ik-Jae;Koom, Woong-Sub;Jeon, Byeong-Chul
    • Radiation Oncology Journal
    • /
    • v.26 no.4
    • /
    • pp.280-288
    • /
    • 2008
  • Purpose: To identify the inter-fractional shift pattern and to assess an adequate treatment margin in the radiotherapy of a liver tumor using mega-voltage computed tomography (MVCT) of a tomotherapy unit. Materials and Methods: Twenty-six patients were treated for liver tumors by tomotherapy from April 2006 to August 2007. The MVCT images of each patient were analyzed from the $1^{st}$ to the $10^{th}$ fraction for the assessment of the daily liver shift by four groups based on Couinard's proposal. Daily setup errors were corrected by bony landmarks as a prerequisite. Subsequently, the anterior-, posterior-, right-, and left shifts of the liver edges were measured by maximum linear discrepancies between the kilo-voltage computed tomography (KVCT) image and MVCT image. All data were set in the 2-dimensional right angle coordinate system of the transverse section of each patient's body. Results: The liver boundary shift had different patterns for each group. In group II (segment 2, 3, and 4), the anterior mean shift was $2.80{\pm}1.73\;mm$ outwards, while the left mean shift was $2.23{\pm}1.37\;mm$ inwards. In group IV (segment 7 and 8), the anterior-, posterior-, right-, and left mean shifts were $0.15{\pm}3.93\;mm$ inwards, $3.15{\pm}6.58\;mm$ inwards, $0.60{\pm}3.58\;mm$ inwards, and $4.50{\pm}5.35\;mm$ inwards, respectively. The reduced volume in group II after MVCT reassessment might be a consequence of stomach toxicity. Conclusion: Inter-fractional liver shifts of each group based on Couinard's proposal were somewhat systematic despite certain variations observed in each patient. The geometrical deformation of the liver by respiratory movement can cause shrinkage in the left margins of liver. We recommend a more sophisticated approach in free-breathing mode when irradiating the left lobe of liver in order to avoid stomach toxicity.

Evaluation of the Lens-absorbed Dose of the Scattered Radiation Generated During Tomotherapy IMRT to the H&N Cancer Patient

  • Choi, Jae-Won;Lee, Hae-Kag;Cho, Jae-Hwan;Choi, Cheon Woong;Ju, Myung Sik;Chang, Bok Soon;Park, Cheol-Soo
    • Journal of Magnetics
    • /
    • v.22 no.1
    • /
    • pp.141-145
    • /
    • 2017
  • This paper uses a glass dosimeter to evaluate the lens-absorbed dose of scattered radiation generated in tomotherapy intensity modulated radiation therapy (IMRT). The head and neck portion of the rando phantom was subjected to a CT scan. The tomotherapy plan was designed to ensure delivery of the prescribed total 70 Gy day 2.2 Gy. With the lens portion of the glass dosimeter, a 5mm bolus was subjected to the scattered radiation treatment, and the dose was measured in each of the three megavoltage CT (MVCT) modes. The result is multiplied by 30 times and was determined once as the mean value. The measurement at the MVCT Coarse mode is RT mode 10.797 mGy, that for the Normal mode is 13.360 mGy, for the Fine mode is a maximum of 22.872 mGy, and for the treatment mode is 895.830 mGy. A small amount of scattered radiation in the MVCT is measured in the lens scattered radiation, but scattered radiation during treatment was measured to be near 1 Gy on the lens. Compared to a one-time radiation treatment of 2.2 Gy, the survey showed something unexpected in that it was half the value of that research to the patient. Therefore, will be aware of how much of an influence there will be on sensitive organs, such as the lens by scattered radiation generated during intensity modulated radiation therapy.

Analysis of Couch Sag Using Image Processing of MVCT Images in Tomotherapy (토모테라피에서 MVCT 영상을 이용한 환자 테이블의 처짐 정도의 분석)

  • Park, Ha Ryung;Kim, Yong Ho;Park, Dahl;Kim, Wontaek;Ki, Yongkan;Kim, Donghyun;Bae, Jin Suk
    • Progress in Medical Physics
    • /
    • v.26 no.2
    • /
    • pp.106-111
    • /
    • 2015
  • In Tomotherapy the couch sags during the treatment due to the weight of the patient. In this study, we developed a simple method to obtain the amount of the sag and the pitch angle of the couch using the image processing technique of MVCT images in Tomotherapy. Using the method we evaluated the sag and pitch of couch for 22 head and neck patients and one craniospinal irradiation (CSI) patient. The sag and the average pitch angle of couch were 0.40~1.54 mm and $0.7^{\circ}$ for head and neck patients, respectively. For head and neck patients, the sag increased as the longitudinal length of the irradiation volume increased and the pitch angle showed no relationship with the longitudinal length. For the CSI patient the sag was 4.97 mm. Using the method the amount of the couch sag could be measured easily and the measured data could be useful in determination of margins considering the table sag error.

Usefulness of Abdominal Compressor Using Stereotactic Body Radiotherapy with Hepatocellular Carcinoma Patients (토모테라피를 이용한 간암환자의 정위적 방사선치료시 복부압박장치의 유용성 평가)

  • Woo, Joong-Yeol;Kim, Joo-Ho;Kim, Joon-Won;Baek, Jong-Geal;Park, Kwang-Soon;Lee, Jong-Min;Son, Dong-Min;Lee, Sang-Kyoo;Jeon, Byeong-Chul;Cho, Jeong-Hee
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.24 no.2
    • /
    • pp.157-165
    • /
    • 2012
  • Purpose: We evaluated usefulness of abdominal compressor for stereotactic body radiotherapy (SBRT) with unresectable hepatocellular carcinoma (HCC) patients and hepato-biliary cancer and metastatic liver cancer patients. Materials and Methods: From November 2011 to March 2012, we selected HCC patients who gained reduction of diaphragm movement >1 cm through abdominal compressor (diaphragm control, elekta, sweden) for HT (Hi-Art Tomotherapy, USA). We got planning computed tomography (CT) images and 4 dimensional (4D) images through 4D CT (somatom sensation, siemens, germany). The gross tumor volume (GTV) included a gross tumor and margins considering tumor movement. The planning target volume (PTV) included a 5 to 7 mm safety margin around GTV. We classified patients into two groups according to distance between tumor and organs at risk (OAR, stomach, duodenum, bowel). Patients with the distance more than 1 cm are classified as the 1st group and they received SBRT of 4 or 5 fractions. Patients with the distance less than 1 cm are classified as the 2nd group and they received tomotherapy of 20 fractions. Megavoltage computed tomography (MVCT) were performed 4 or 10 fractions. When we verify a MVCT fusion considering priority to liver than bone-technique. We sent MVCT images to Mim_vista (Mimsoftware, ver .5.4. USA) and we re-delineated stomach, duodenum and bowel to bowel_organ and delineated liver. First, we analyzed MVCT images to check the setup variation. Second we compared dose difference between tumor and OAR based on adaptive dose through adaptive planning station and Mim_vista. Results: Average setup variation from MVCT was $-0.66{\pm}1.53$ mm (left-right) $0.39{\pm}4.17$ mm (superior-inferior), $0.71{\pm}1.74$ mm (anterior-posterior), $-0.18{\pm}0.30$ degrees (roll). 1st group ($d{\geq}1$) and 2nd group (d<1) were similar to setup variation. 1st group ($d{\geq}1$) of $V_{diff3%}$ (volume of 3% difference of dose) of GTV through adaptive planing station was $0.78{\pm}0.05%$, PTV was $9.97{\pm}3.62%$, $V_{diff5%}$ was GTV 0.0%, PTV was $2.9{\pm}0.95%$, maximum dose difference rate of bowel_organ was $-6.85{\pm}1.11%$. 2nd Group (d<1) GTV of $V_{diff3%}$ was $1.62{\pm}0.55%$, PTV was $8.61{\pm}2.01%$, $V_{diff5%}$ of GTV was 0.0%, PTV was $5.33{\pm}2.32%$, maximum dose difference rate of bowel_organ was $28.33{\pm}24.41%$. Conclusion: Despite we saw diaphragm movement more than 5 mm with flouroscopy after use an abdominal compressor, average setup_variation from MVCT was less than 5 mm. Therefore, we could estimate the range of setup_error within a 5 mm. Target's dose difference rate of 1st group ($d{\geq}1$) and 2nd group (d<1) were similar, while 1st group ($d{\geq}1$) and 2nd group (d<1)'s bowel_organ's maximum dose difference rate's maximum difference was more than 35%, 1st group ($d{\geq}1$)'s bowel_organ's maximum dose difference rate was smaller than 2nd group (d<1). When applicating SBRT to HCC, abdominal compressor is useful to control diaphragm movement in selected patients with more than 1 cm bowel_organ distance.

  • PDF

Development of Tomotherapy couch device capable of yaw-directional correction (Yaw방향의 보정이 가능한 Tomotherapy couch device의 개발)

  • Chae, Moon Ki;Kwon, Dong Yeol;Sun, Jong Lyool;Choi, Byung Ki
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.30 no.1_2
    • /
    • pp.139-151
    • /
    • 2018
  • Objectives : A self-made "Tomotherapy couch device" capable of correcting the Yaw direction was fabricated and evaluated for its usefulness. Materials and Methods : "Tomotherapy couch device" capable of correcting the Yaw direction is made of rigid fibreboard with a flexural strength of $200kg/cm^2$. CBCT Image from Novalis Tx and Iso-Align Phantom from MED-TEC were used to evaluate the physical accuracy. The treatment plan was designed using Accuray $Precision^{TM}$ and In House Head and Phantom. Accuray $PrecisionART^{TM}$ and $Precision^{TM}$ was used to evaluate dose. Results : Evaluation results, the self-fabricated device accurately corrected the setup error, Target dose was within 95 %~107 % of all. In order to directly evaluate the OAR dose according to the Yaw change, the absolute dose was measured. As a result, when the error in the Yaw direction was $3^{\circ}$, the specific OAR showed a maximum difference of 18.4 %. Conclusion : "Tomotherapy couch device" capable of correcting the Yaw direction can be manufactured at a lower cost compared to the effect, and it can prevent the patient's MVCT image dose for re-imaging. Accurate radiation therapy without errors can be performed.

  • PDF

Study of the CatcherTM Couch's Usefulness (토모치료기 CatcherTM Couch의 유용성에 대한 고찰)

  • Um, Ki Cheon;Lee, Chung Hwan;Jeon, Soo Dong;Song, Heung Kwon;Back, Geum Mun
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.31 no.2
    • /
    • pp.65-74
    • /
    • 2019
  • Purpose: Recently, A Catcher was added to prevent sagging in Radixact® X9. In this study, We quantitatively compared general couch of Tomo-HDA® with catcher couch of Radixact® X9 using the human phantom and evaluated usefulness of catcher. Materials and methods: We used rando phantom for phantom study and set the each iso-center of head and neck region and Pelvis region for region parameter. Furthermore, We used hand made low melting point alloys for weight parameter. MVCT(Mega Voltage Computed Tomography) images were acquired for vertical error and rotation(pitch) error measurement increasing weight(A: 15kg, A+B: 30kg, A+B+C: 45kg). We selected 120 patients who has been treated using Tomotherpy machine for patient study. 60 patients has been treated in Tomo-HDA® and the other 60 patients treated in Radixact® X9. In the patient study methods, vertical error and rotation(pitch) error was measured for mean value calculation using MVCT images acquired on first day of radiation therapy. Result: Result of phantom study, Vertical error and rotation(pitch) error was increased proportionally increased as the weight increases in general couch of Tomo-HDA®. each maximum value was 7.52mm, 0.38° in head and neck region and 11.94mm, 0.92° in pelvis region. However, We could confirm that there was stable error range(0.02~0.1mm, 0~0.04°) in Catcher couch of Radixact®. Result of patient study, The head and neck region was measured 4.79mm 0.33° lower, and the pelvis region was measured 7.66mm, 0.22° lower in Catcher couch of Radixact® X9. Conclusion: In this study, Vertical error and rotation(pitch) error was proportionally increased as the weight increases in general couch of Tomo-HDA®. Especially, The pelvis region error was more increased than the head and neck region error. However, Vertical error and rotation(pitch) error was regularly generated regardless of weight or regions in CatcherTM couch of Radixact® X9 that this study's purpose. In conclusion, CatcherTM couch of Radixact® X9 can minimize mechanical error that couch sagging. Furthermore, The pelvis region is more efficiency than head and neck region. In radiation therapy using Tomotherapy machine, it is regarded that may contribute to minimizing unadjusted pitch error due to characters of Tomotherapy.

Usefulness of Non-coplanar Helical Tomotherapy Using Variable Axis Baseplate (Variable Axis Baseplate를 이용한 Non-coplanar 토모테라피의 유용성)

  • Ha, Jin-Sook;Chung, Yoon-Sun;Lee, Ik-Jae;Shin, Dong-Bong;Kim, Jong-Dae;Kim, Sei-Joon;Jeon, Mi-Jin;Cho, Yoon-Jin;Kim, Ki-Kwang;Lee, Seul-Bee
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.23 no.1
    • /
    • pp.31-39
    • /
    • 2011
  • Purpose: Helical Tomotherapy allows only coplanar beam delivery because it does not allow couch rotation. We investigated a method to introduce non-coplanar beam by tilting a patient's head for Tomotherapy. The aim of this study was to compare intrafractional movement during Tomotherapy between coplanar and non-coplanar patient's setup. Materials and Methods: Helical Tomotherapy was used for treating eight patients with intracranial tumor. The subjects were divided into three groups: one group (coplanar) of 2 patients who lay on S-plate with supine position and wore thermoplastic mask for immobilizing the head, second group (non-coplanar) of 3 patients who lay on S-plate with supine position and whose head was tilted with Variable Axis Baseplate and wore thermoplastic mask, and third group (non-coplanar plus mouthpiece) of 3 patients whose head was tilted and wore a mouthpiece immobilization device and thermoplastic mask. The patients were treated with Tomotherapy after treatment planning with Tomotherapy Planning System. Megavoltage computed tomography (MVCT) was performed before and after treatment, and the intrafractional error was measured with lateral(X), longitudinal(Y), vertical(Z) direction movements and vector ($\sqrt{x^2+y^2+z^2}$) value for assessing overall movement. Results: Intrafractional error was compared among three groups by taking the error of MVCT taken after the treatment. As the correction values (X, Y, Z) between MVCT image taken after treatment and CT-simulation image are close to zero, the patient movement is small. When the mean values of movement of each direction for non-coplanar setup were compared with coplanar setup group, X-axis movement was decreased by 13%, but Y-axis and Z-axis movement were increased by 109% and 88%, respectively. Movements of Y-axis and Z-axis with non-coplanar setup were relatively greater than that of X-axis since a tilted head tended to slip down. The mean of X-axis movement of the group who used a mouthpiece was greater by 9.4% than the group who did not use, but the mean of Y-axis movement was lower by at least 64%, and the mean of Z-axis was lower by at least 67%, and the mean of Z-axis was lower by at least 67%, and the vector was lower by at least 59% with the use of a mouthpiece. Among these 8 patients, one patient whose tumor was located on left frontal lobe and left basal ganglia received reduced radiation dose of 38% in right eye, 23% in left eye, 30% in optic chiasm, 27% in brain stem, and 8% in normal brain with non-coplanar method. Conclusion: Tomotherapy only allows coplanar delivery of IMRT treatment. To complement this shortcoming, Tomotherapy can be used with non-coplanar method by artificially tilting the patient's head and using an oral immobilization instrument to minimize the movement of patient, when intracranial tumor locates near critical organs or has to be treated with high dose radiation.

  • PDF