• Title/Summary/Keyword: MT inversion

Search Result 56, Processing Time 0.025 seconds

Characteristics of Static Shift in 3-D MT Inversion (3차원 MT 역산에서 정적효과의 특성 고찰)

  • Lee Tae Jong;Uchida Toshihiro;Sasaki Yutaka;Song Yoonho
    • Geophysics and Geophysical Exploration
    • /
    • v.6 no.4
    • /
    • pp.199-206
    • /
    • 2003
  • Characteristics of the static shift are discussed by comparing the three-dimensional MT inversion with/without static shift parameterization. The galvanic distortion by small-scale shallow feature often leads severe distortion in inverted resistivity structures. The new inversion algorithm is applied to four numerical data sets contaminated by different amount of static shift. In real field data interpretations, we generally do not have any a-priori information about how much the data contains the static shift. In this study, we developed an algorithm for finding both Lagrangian multiplier for smoothness and the trade-off parameter for static shift, simultaneously in 3-D MT inversion. Applications of this inversion routine for the numerical data sets showed quite reasonable estimation of static shift parameters without any a-priori information. The inversion scheme is successfully applied to all the four data sets, even when the static shift does not obey the Gaussian distribution. Allowing the static shift parameters have non-zero degree of freedom to the inversion, we could get more accurate block resistivities as well as static shifts in the data. When inversion does not consider the static shift as inversion parameters (conventional MT inversion), the block resistivities on the surface are modified considerably to match possible static shift. The inhomogeneous blocks on the surface can generate the static shift at low frequencies. By those mechanisms, the conventional 3-D MT inversion can reconstruct the resistivity structures to some extent in the deeper parts even when moderate static shifts are in the data. As frequency increased, however, the galvanic distortion is not frequency independent any more, and thus the conventional inversion failed to fit the apparent resistivity and phase, especially when strong static shift is added. Even in such case, however, reasonable estimation of block resistivity as well as static shift parameters were obtained by 3-D MT inversion with static shift parameterization.

A Study on Geoelectrical Structure of Jeju Island Using 3D MT Inversion of 2D Profile Data (2차원 MT 자료의 3차원 역산을 통한 제주도 지전기구조 연구)

  • Choi, Ji-Hyang;Kim, Hee-Joon;Nam, Myung-Jin;Lee, Tae-Jong;Han, Nu-Ree;Lee, Seong-Kon;Song, Yoon-Ho;Suh, Jung-Hee
    • Geophysics and Geophysical Exploration
    • /
    • v.10 no.4
    • /
    • pp.268-274
    • /
    • 2007
  • Traditional two-dimensional (2D) interpretation of magnetotelluric (MT) data utilizes only transverse magnetic (TM)-mode data, because 2D inversion of transverse electric (TE)-mode data results in spurious features when 3D structures exist in the subsurface. The application of a 3D inversion algorithm to a single MT profile can reduce contamination due to off-profile anomalies and help us to incorporate TE-mode data in the interpretation. In this study, we conduct 2D and 3D inversions of MT data observed along two lines in Jeju Island. First, we invert apparent resistivities and phases in the TM and TE modes separately. Then, we perform 2D joint inversion of both TM- and TE-mode data and 3D inversion of both Zxy- and Zyx-mode data corresponding to TE- and TM-mode data in 2D. The resistivity images derived from all four data show that the geoelectrical structure in Jeju Island is a three-layered earth with the resistive-conductive-resistive stratigraphy within a depth of 5 km. The 3D inversion does not produce clear anomalies in the reconstructed profile image, while all of 2D do. This attributed to the possibility that 2D inversion results are distorted by exiting off-profile 3D anomalies in Jeju. With 3D inversion of 2D profile MT data, we can deduce more reliable results that are not seriously distorted by off-profile 3D anomalies.

Two-dimensional Modeling and Inversion of MT Data Including Topography (지형을 포함한 MT 탐사 자료의 2차원 모델링과 역산)

  • Lee Seong Kon;Song Yoonho;Kim Jung-Ho;Chung Seung-Hwan
    • Geophysics and Geophysical Exploration
    • /
    • v.5 no.4
    • /
    • pp.291-298
    • /
    • 2002
  • We have developed a two-dimensional (2-D) magnetotelluric (MT) inversion algorithm, which can include topographic effects in inversion. We use the finite element method (FEM) to incorporate topography into forward calculation. Topography is implemented simply by moving nodes of rectangular elements in z-direction according to the elevation of air-earth interface. In the inversion process, we adopt a spatially variable Lagrangian multiplier algorithm in the smoothness-constrained least-squares inversion. The inversion algorithm developed in this study reconstructs subsurface resistivity structure quite well when topography variation exists. Also, it turns out to be effective in both resolution and stability from a model study and field data application.

An Efficient 3D Inversion of MT Data Using Approximate Sensitivities (효율적인 3차원 MT 역산을 위한 다양한 감도의 이용)

  • Han, Nu-Ree;Nam, Myung-Jin;Kim, Hee-Joon;Lee, Tae-Jong;Song, Yoon-Ho;Suh, Jung-Hee
    • Geophysics and Geophysical Exploration
    • /
    • v.10 no.4
    • /
    • pp.259-267
    • /
    • 2007
  • An efficient algorithm for inverting static-shifted magnetotelluric (MT) data has been proposed to produce a three-dimensional (3D) resistivity model. In the Gauss-Newton approach, computational costs associated with construction of a full sensitivity matrix usually make 3D MT inversion impractical. This computational difficulty may be overcome by using approximate sensitivities. We use four kinds of sensitivities in particular orders in the inversion process. These sensitivities are computed 1) analytically for an initial, homogeneous earth, 2) exactly for a current model, 3) approximately by the Broyden method, and 4) approximately using the previous adjoint fields. Inversion experiments with static-shifted synthetic and field MT data indicate that inversion results are highly dependent on characteristics of data and thus applying various combinations of sensitivities is helpful in obtaining a good image of the subsurface structure with reasonable computation time.

A two-dimensional inversion of MT and AMT data from mid-mountain area of Jeiu island (제주도 중산간 지역 MT 및 AMT 탐사자료의 2차원 역산)

  • Lee, Tae-Jong;Song, Yoon-ho;Uchida,Toshihiro;Park, In-Wha;Lim, Sung-Keun
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2005.05a
    • /
    • pp.21-26
    • /
    • 2005
  • Two-dimensional (2-D) inversion of magnetotelluric (MT) data for two survey lines having south-north direction from Jeiu Island has been carried out. The 2-D models show a thick layer having around 10 ohm-m in the depth of a few hundred meters throughout the survey area, which can be considered as the unconsolidated sedimentary layer. And they also show a conductive anomaly at the central part of each survey lines. But unfortunately by now, we do not have any further information about the anomaly. Comparison of the 2-D inversion model using MT band only and that using both AMT and MT bands said that it is helpful for us to include AMT band as well as MT band in the inversion to interpret not only the shallow part but also the deep structures.

  • PDF

On the Efficient Three-Dimensional Inversion of Static Shifted MT Data (정적효과를 포함한 자기지전류 자료의 효율적인 3차원 역산에 관하여)

  • Jang, Hannuree;Jang, Hangilro;Kim, Hee Joon
    • Geophysics and Geophysical Exploration
    • /
    • v.17 no.2
    • /
    • pp.95-103
    • /
    • 2014
  • This paper presents a practical inversion method for recovering a three-dimensional (3D) resistivity model and static shifts simultaneously. Although this method is based on a Gauss-Newton approach that requires a sensitivity matrix, the computer time can be greatly reduced by implementing a simple and effective procedure for updating the sensitivity matrix using the Broyden's algorithm. In this research, we examine the approximate inversion procedure and the weighting factor ${\beta}$ for static shifts through inversion experiments using synthetic MT data. In methods using the full sensitivity matrix constructed only once in the iteration process, a procedure using the full sensitivity in the earlier stage is useful to produce the smallest rms data misfit. The choice of ${\beta}$ is not critical below some threshold value. Synthetic examples demonstrate that the method proposed in this paper is effective in reconstructing a 3D resistivity structure from static-shifted MT data.

An efficient 3D inversion of magnetotelluric data

  • Han, Nu-Ree;Choi, Ji-Hyang;Nam, Myung-Jin;Kim, Hee-Joon;Lee, Tae-Jong;Song, Yoon-Ho;Suh, Jung-Hee
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.261-266
    • /
    • 2007
  • An efficient three-dimensional (3D) inversion of magnetotelluric (MT) data can be carried out by using approximate sensitivities or avoiding the calculation of a full sensitivity matrix. In this paper, we propose approximate sensitivities for efficient 3D MT inversion based on the Gauss-Newton method and test and compare four kinds of sensitivities. Applying the four sensitivities to both synthetic and field data shows that the effects of sensitivities are highly dependent on data and thus applying various combinations of sensitivities is recommended for efficient inversion and good images.

  • PDF

Analysis of MT Data Acquired in Victoria, Australia (호주 Victoria주 MT 탐사 자료 해석)

  • Lee, Seong-Kon;Lee, Tae-Jong;Uchida, Toshihiro;Park, In-Hwa;Song, Yoon-Ho;Cull, Jim
    • Geophysics and Geophysical Exploration
    • /
    • v.11 no.3
    • /
    • pp.184-196
    • /
    • 2008
  • We perform MT soundings in Bendigo, the northern part of Victoria, Australia, to investigate the deep subsurface geologic structure. The primary purpose of this survey is to figure out whether the discontinuity such as faults extends northward. The time series of MT signal were measured over 11 days at 71 measurement stations together with at remote reference, which help enhance the quality of impedance estimation and its interpretation. The impedances are estimated by robust processing using remote reference technique and then inverted with 2D MT 2D inversion. We can see that known faults are clearly imaged in MT 2D inversion. Comparing resistivity images from MT 2D inversion with interpreted boundary from reflection seismic exploration, two interpretations match well each other.

Generalized Rapid Relaxation Inversion of Two-Dimensional Magnetotelluric Survey Data (GRRI를 이용한 2차원 MT 탐사자료의 역산)

  • Jeong, Yong-Hyun;Suh, Jung-Hee;Shin, Chang-Soo
    • Geophysics and Geophysical Exploration
    • /
    • v.1 no.1
    • /
    • pp.71-78
    • /
    • 1998
  • Inversion schemes of 2-D MT survey data generally take enormous computational time and computer memory. In addition, careful attention must be paid in handling MT data, especially in cases of TM mode, inversion results can be seriously distorted because of static effect caused by current channeling across inhomogeneous surface boundaries. There-fore inversion algorithm using the GRRI scheme for TM mode MT data was implemented. This scheme is based on a perturbation analysis with a locally 2-D analysis and local inversions were sequently performed over each divided section without additional forward modelings. The algorithm was applied to several synthetic data for the purpose of verification of its efficiency and applicability. With less computer resources than conventional schemes, it could handle static effect directly by including current channeling across inhomogeneous boundaries. Thus it is expected to be used for an useful tool such as a real-time inversion scheme in the field.

  • PDF

An Application of Minimum Support Stabilizer as a Model Constraint in Magnetotelluric 2D Inversion (최소모델영역 연산자를 모델제한조건으로 적용한 2차원 MT 역산)

  • Lee, Seong-Kon
    • Journal of the Korean earth science society
    • /
    • v.30 no.7
    • /
    • pp.834-844
    • /
    • 2009
  • Two-dimensional magnetotelluric (MT) inversion algorithm using minimum support (MS) stabilizer functional was implemented in this study to enhance the contrast of inverted images. For this implementation, this study derived a formula in discrete form for creeping model updates in the least-squares linearized inversion. A spatially varying regularization parameter determination algorithm, which is known as ACB (Active Constraint Balancing), was also adopted to stabilize the inversion process when using MS stabilizer as a model constraint. Inversion experiments for a simple isolated body model show well the feature of MS stabilizer in concentrating the anomalous body compared with the second-order derivative model constraint. This study also compared MS stabilizer and the second-order derivative model constraints for a model having multiple anomalous bodies to show the applicability of the algorithm into field data.