Browse > Article
http://dx.doi.org/10.7582/GGE.2014.17.2.095

On the Efficient Three-Dimensional Inversion of Static Shifted MT Data  

Jang, Hannuree (Energy Resources Institute, Pukyong National University)
Jang, Hangilro (Department of Energy Resources Engineering, Pukyong National University)
Kim, Hee Joon (Department of Energy Resources Engineering, Pukyong National University)
Publication Information
Geophysics and Geophysical Exploration / v.17, no.2, 2014 , pp. 95-103 More about this Journal
Abstract
This paper presents a practical inversion method for recovering a three-dimensional (3D) resistivity model and static shifts simultaneously. Although this method is based on a Gauss-Newton approach that requires a sensitivity matrix, the computer time can be greatly reduced by implementing a simple and effective procedure for updating the sensitivity matrix using the Broyden's algorithm. In this research, we examine the approximate inversion procedure and the weighting factor ${\beta}$ for static shifts through inversion experiments using synthetic MT data. In methods using the full sensitivity matrix constructed only once in the iteration process, a procedure using the full sensitivity in the earlier stage is useful to produce the smallest rms data misfit. The choice of ${\beta}$ is not critical below some threshold value. Synthetic examples demonstrate that the method proposed in this paper is effective in reconstructing a 3D resistivity structure from static-shifted MT data.
Keywords
MT; 3D; static shifts; inversion; Gauss-Newton; Broyden's algorithm;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Sasaki, Y., 2004, Three-dimensional inversion of static-shifted magnetotelluric data, Earth Planets Space, 56, 239-248.   DOI
2 Ogawa, Y., and Uchida, T., 1996, A two-dimensional magnetotelluric inversion assuming Gaussian static shift, Geophys. J. Int., 126, 69-76.   DOI   ScienceOn
3 Sasaki, Y., 1999, Three-dimensional frequency-domain electromagnetic modeling using the finite-difference method, Butsuri-Tansa, 52, 421-431. (Japanese with English abstract)
4 Sasaki, Y., and Meju, M. A., 2006, Three-dimensional joint inversion for magnetotelluric resistivity and static shift distributions in complex media, J. Geophys. Res., 111, B05151.
5 Siripunvaraporn, W., Egbert, G., Lenbury, Y., and Uyeshima, M., 2005, Three-dimensional magnetotelluric inversion: data-space method, Physics of the Earth and Planetary Interiors, 150, 3-14.   DOI   ScienceOn
6 Smith, J. T., 1996, Conservative modeling of 3-D electromagnetic fields, Part II: Biconjugate gradient solution and an accelerator, Geophysics, 61, 1319-1324.   DOI   ScienceOn
7 Sternberg, B. K., Washburne, J. C., and Pellerin, L., 1988, Correction for the static shift in magnetotellurics using transient electromagnetic soundings, Geophysics, 53, 1459-1468.   DOI
8 Takasugi, S., Tanaka, N., Kawakami, N., and Muramatsu, S., 1992, High spatial resolution of the resistivity structure revealed by a dense network MT measurement - A case study in the Minamikayabe area, Hokkaido, Japan, J. Geomag. Geoelectr., 44, 289-308.   DOI
9 Torres-Verdin, C., and Bostick, F. X., 1992, Principles of spatial surface electric fields filtering in magnetotellurics: Electromagnetic array profiling (EMAP), Geophysics, 57, 603-622.   DOI
10 Uchida, T., Lee, T. J., Honda, M., and Andan, A., 2002, 2-D and 3-D interpretation of magnetotelluric data in the Bajawa geothermal field, central Flores, Indonesia, Bull. Geol. Surv. Japan, 53, 265-283.   DOI
11 Unsworth, M. J., Travis, B. J., and Chave, A. D., 1993, Electromagnetic induction by a finite electric dipole source over a 2-D earth, Geophysics, 58, 198-214.   DOI
12 Han, N., Nam, M. J., Kim, H. J., Lee, T. J., Song, Y., and Suh, J. H., 2008, Efficient three-dimensional inversion of magnetotelluric data using approximate sensitivities, Geophys. J. Int., 175, 477-485.   DOI   ScienceOn
13 Yee, K. S., 1966, Numerical solution of initial boundary value problems involving Maxwell's equation in isotropic media, IEEE Trans. Anten. Prop., AP-14, 302-307.
14 Groom, R. W., and Bailey, R. C., 1989, Decomposition of magnetotelluric impedance tensors in the presence of local three-dimensional galvanic distortion, J. Geophys. Res., 94, 1913-1925.   DOI
15 Han, N., Nam, M. J., Kim, H. J., Lee, T. J., Song, Y., and Suh, J. H., 2007, An Efficient 3D Inversion of MT Data Using Approximate Sensitivities, Mulli-Tamsa, 10(4), 259-267.   과학기술학회마을
16 deGroot-Hedlin, C., 1991, Removal of static shift in two dimensions by regularized inversion, Geophysics, 56, 2102-2106.   DOI
17 Lee, S. K., Kim, H. J., Song, Y., and Lee, C.-K., 2009, MT2DInvMatlab-A program in MATLAB and FORTRAN for two-dimensional magnetotelluric inversion, Computers & Geosciences, 35, 1722-1734.   DOI   ScienceOn
18 Lee, T. J., Uchida, T., Sasaki, Y., and Song, Y., 2003, Characteristics of static shift in 3-D MT inversion, Mulli-Tamsa, 6, 199-206.   과학기술학회마을
19 Lee, T. J., Song, Y., and Uchida, T., 2007, Three-dimensional magnetotelluric surveys for geothermal development in Pohang, Korea, Exploration Geophysics, 38, 44-49.   DOI
20 McGillivray, P. R., Oldenburg, D. W., Ellis, R. G., and Habashy, T. M., 1994, Calculation of sensitivities for the frequency-domain electromagnetic problem, Geophys. J. Int., 116, 1-4.   DOI
21 Loke, M. H., and Barker, R. D., 1996, Practical technique for 3D resistivity surveys and data inversion, Geophys. Prosp., 44, 499-523.   DOI   ScienceOn
22 Jones, A. G., 1988, Static shift of magnetotelluric data and its removal in a sedimentary basin environment, Geophysics, 53, 967-978.   DOI