• 제목/요약/키워드: MSCs

검색결과 305건 처리시간 0.026초

A method of isolation and characterization of canine endometrial-derived mesenchymal stem cells

  • Mi Kyung Park;Kun Ho Song
    • 한국동물위생학회지
    • /
    • 제46권2호
    • /
    • pp.157-160
    • /
    • 2023
  • Endometrial tissue is a known source of mesenchymal stem cells (MSCs). We isolated canine endometrial stem cells from canine endometrial tissues using an enzymatic method and confirmed the immunophenotype of mesenchymal stem cells and multilineage differentiation. Canine endometrial tissues were obtained from canine ovariohysterectomy surgery and isolated using 0.2% collagenase type I. We measured the immunophenotype of stem cells using flow cytometry. To confirm the differentiation ability, a trilineage differentiation assay was conducted. In this study, canine endometrialderived MSCs (cEM-MSCs) were isolated by enzyme treatment and showed a spindle-shaped morphology under a microscope. Moreover, cEM-MSCs showed a trilineage differentiation ability. In this study, the canine endometrium was a good source of MSCs.

Applications of Bioinspired Platforms for Enhancing Immunomodulatory Function of Mesenchymal Stromal Cells

  • Ok-Hyeon Kim;Tae Jin Jeon;Young In So;Yong Kyoo Shin;Hyun Jung Lee
    • International Journal of Stem Cells
    • /
    • 제16권3호
    • /
    • pp.251-259
    • /
    • 2023
  • Mesenchymal stromal cells (MSCs) have attracted scientific and medical interest due to their self-renewing properties, pluripotency, and paracrine function. However, one of the main limitations to the clinical application of MSCs is their loss of efficacy after transplantation in vivo. Various bioengineering technologies to provide stem cell niche-like conditions have the potential to overcome this limitation. Here, focusing on the stem cell niche microenvironment, studies to maximize the immunomodulatory potential of MSCs by controlling biomechanical stimuli, including shear stress, hydrostatic pressure, stretch, and biophysical cues, such as extracellular matrix mimetic substrates, are discussed. The application of biomechanical forces or biophysical cues to the stem cell microenvironment will be beneficial for enhancing the immunomodulatory function of MSCs during cultivation and overcoming the current limitations of MSC therapy.

15-Hydroxyprostaglandin Dehydrogenase Is Associated with the Troglitazone-Induced Promotion of Adipocyte Differentiation in Human Bone Marrow Mesenchymal Stem Cells

  • Noh, Min-Soo;Lee, Soo-Hwan
    • Biomolecules & Therapeutics
    • /
    • 제18권1호
    • /
    • pp.16-23
    • /
    • 2010
  • Adipocyte differentiation in human bone marrow mesenchymal stem cells (hBM-MSCs) is not as efficient as that in murine pre-adipocytes when induced by adipogenic agents including insulin, dexamethasone, and 3-isobutyl-1-methylxanthine (IDX condition). Therefore, the promotion of adipocyte differentiation in hBM-MSCs has been used as a cell culture model to evaluate insulin sensitivity for anti-diabetic drugs. In hBM-MSCs, $PPAR{\gamma}$ agonists or sulfonylurea anti-diabetic drugs have been added to IDX conditions to promote adipocyte differentiation. Here we show that troglitazone, a peroxisome proliferator-activated receptor-gamma ($PPAR{\gamma}$) agonist, significantly reduced the levels of anti-adipogenic $PGE_2$ in IDX-conditioned hBM-MSC culture supernatants when compared to $PGE_2$ levels in the absence of $PPAR{\gamma}$ agonist. However, there was no difference in the mRNA levels of cyclooxygenases (COXs) and the activities of COXs and prostaglandin synthases during adipocyte differentiation in hBM-MSCs with or without troglitazone. In hBM-MSCs, troglitazone significantly increased the mRNA level of 15-hydroxyprostaglandin dehydrogenase (HPGD) which can act to decrease $PGE_2$ levels in culture. These results suggest that the role of $PPAR{\gamma}$ activation in promoting adipocyte differentiation in hBM-MSCs is to reduce anti-adipogenic $PGE_2$ levels through the up-regulation of HPGD expression.

디엠프리(녹차추출물)에 의한 나균 감염 중간엽줄기세포의 IL-6 생산 억제 (DMfree®(Green Tea Extract) Inhibits IL-6 of Mycobacterium leprae Infected Mesenchymal Stem Cells)

  • 박란숙
    • 한국식품영양학회지
    • /
    • 제28권4호
    • /
    • pp.695-701
    • /
    • 2015
  • Previous reports revealed that DMfree (green tea extract) inhibited expression of the IL-6 gene in Mycobacterium lepraeinfected MSCs (mesenchymal stem cells). This study aimed to measure IL-6, $IL-1{\beta}$, $TNF-{\alpha}$ and PGE2 production in M. leprae-infected MSCs using ELISA. To confirm the effect of DMfree on IL-6 and signal transduction, a western blotting test was performed. DMfree inhibited the expression of IL-6 in the MSCs and the heterodimer of STAT3, which also affects the expression of multiple genes. Though DMfree pre-treatment of control MSCs produced a baseline level of IL-6, it significantly inhibited the production of IL-6 in M. leprae-infected MSCs. There was no significant difference in IL-6 production between 1 and 7 day treatment groups. M. leprae-infected MSCs produced more $IL-1{\beta}$, $TNF-{\alpha}$ and PGE2, but DMfree could not inhibit their production at a physiological concentration. This is different from other reports that used higher concentration of EGCG treatment, resulting in significant inhibition of the cytokines. The inhibition appears to be related to the concentration of EGCG. These results indicate that DMfree can alleviate inflammation involving IL-6.

Melatonin Protects Chronic Kidney Disease Mesenchymal Stem/Stromal Cells against Accumulation of Methylglyoxal via Modulation of Hexokinase-2 Expression

  • Go, Gyeongyun;Yoon, Yeo Min;Yoon, Sungtae;Lee, Gaeun;Lim, Ji Ho;Han, Su-Yeon;Lee, Sang Hun
    • Biomolecules & Therapeutics
    • /
    • 제30권1호
    • /
    • pp.28-37
    • /
    • 2022
  • Treatment options for patients with chronic kidney disease (CKD) are currently limited; therefore, there has been significant interest in applying mesenchymal stem/stromal cell (MSC)-based therapy to treat CKD. However, MSCs harvested from CKD patients tend to show diminished viability and proliferation due to sustained exposure to uremic toxins in the CKD environment, which limits their utility for cell therapy. The application of melatonin has been demonstrated to improve the therapeutic efficacy of MSCs derived from and engrafted to tissues in patients suffering from CKD, although the underlying biological mechanism has not been elucidated. In this study, we observed overexpression of hexokinase-2 (HK2) in serum samples of CKD patients and MSCs harvested from an adenine-fed CKD mouse model (CKD-mMSCs). HK2 upregulation led to increased production levels of methylglyoxal (MG), a toxic metabolic intermediate of abnormal glycolytic processes. The overabundance of HK2 and MG was associated with impaired mitochondrial function and low cell proliferation in CKD-mMSCs. Melatonin treatment inhibited the increases in HK2 and MG levels, and further improved mitochondrial function, glycolytic metabolism, and cell proliferation. Our findings suggest that identifying and characterizing metabolic regulators such as HK2 in CKD may improve the efficacy of MSCs for treating CKD and other kidney disorders.

Comparative characteristic study from bone marrow-derived mesenchymal stem cells

  • Purwaningrum, Medania;Jamilah, Nabila Syarifah;Purbantoro, Steven Dwi;Sawangmake, Chenphop;Nantavisai, Sirirat
    • Journal of Veterinary Science
    • /
    • 제22권6호
    • /
    • pp.74.1-74.13
    • /
    • 2021
  • Tissue engineering has been extensively investigated and proffered to be a potential platform for novel tissue regeneration. The utilization of mesenchymal stem cells (MSCs) from various sources has been widely explored and compared. In this regard, MSCs derived from bone marrow have been proposed and described as a promising cell resource due to their high yield of isolated cells with colony-forming potential, self-renewal capacity, MSC surface marker expression, and multi-lineage differentiation capacities in vitro. However, there is evidence for bone marrow MSCs (BM-MSCs) both in vitro and in vivo from different species presenting identical and distinct potential stemness characteristics. In this review, the fundamental knowledge of the growth kinetics and stemness properties of BM-MSCs in different animal species and humans are compared and summarized. Finally, to provide a full perspective, this review will procure results of current information studies focusing on the use of BM-MSCs in clinical practice.

Nervonic Acid Inhibits Replicative Senescence of Human Wharton's Jelly-Derived Mesenchymal Stem Cells

  • Sun Jeong Kim;Soojin Kwon;Soobeen Chung;Eun Joo Lee;Sang Eon Park;Suk-Joo Choi;Soo-Young Oh;Gyu Ha Ryu;Hong Bae Jeon;Jong Wook Chang
    • International Journal of Stem Cells
    • /
    • 제17권1호
    • /
    • pp.80-90
    • /
    • 2024
  • Cellular senescence causes cell cycle arrest and promotes permanent cessation of proliferation. Since the senescence of mesenchymal stem cells (MSCs) reduces proliferation and multipotency and increases immunogenicity, aged MSCs are not suitable for cell therapy. Therefore, it is important to inhibit cellular senescence in MSCs. It has recently been reported that metabolites can control aging diseases. Therefore, we aimed to identify novel metabolites that regulate the replicative senescence in MSCs. Using a fecal metabolites library, we identified nervonic acid (NA) as a candidate metabolite for replicative senescence regulation. In replicative senescent MSCs, NA reduced senescence-associated 𝛽-galactosidase positive cells, the expression of senescence-related genes, as well as increased stemness and adipogenesis. Moreover, in non-senescent MSCs, NA treatment delayed senescence caused by sequential subculture and promoted proliferation. We confirmed, for the first time, that NA delayed and inhibited cellular senescence. Considering optimal concentration, duration, and timing of drug treatment, NA is a novel potential metabolite that can be used in the development of technologies that regulate cellular senescence.

Transdifferentiation of α-1,3-galactosyltransferase knockout pig bone marrow derived mesenchymal stem cells into pancreatic β-like cells by microenvironment modulation

  • Ullah, Imran;Lee, Ran;Oh, Keon Bong;Hwang, Seongsoo;Kim, Youngim;Hur, Tai-Young;Ock, Sun A
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제33권11호
    • /
    • pp.1837-1847
    • /
    • 2020
  • Objective: To evaluate the pancreatic differentiation potential of α-1,3-galactosyltransferase knockout (GalTKO) pig-derived bone marrow-derived mesenchymal stem cells (BM-MSCs) using epigenetic modifiers with different pancreatic induction media. Methods: The BM-MSCs have been differentiated into pancreatic β-like cells by inducing the overexpression of key transcription regulatory factors or by exposure to specific soluble inducers/small molecules. In this study, we evaluated the pancreatic differentiation of GalTKO pig-derived BM-MSCs using epigenetic modifiers, 5-azacytidine (5-Aza) and valproic acid (VPA), and two types of pancreatic induction media - advanced Dulbecco's modified Eagle's medium (ADMEM)-based and N2B27-based media. GalTKO BM-MSCs were treated with pancreatic induction media and the expression of pancreas-islets-specific markers was evaluated by real-time quantitative polymerase chain reaction, Western blotting, and immunofluorescence. Morphological changes and changes in the 5'-C-phosphate-G-3' (CpG) island methylation patterns were also evaluated. Results: The expression of the pluripotent marker (POU class 5 homeobox 1 [OCT4]) was upregulated upon exposure to 5-Aza and/or VPA. GalTKO BM-MSCs showed increased expression of neurogenic differentiation 1 in the ADMEM-based (5-Aza) media, while the expression of NK6 homeobox 1 was elevated in cells induced with the N2B27-based (5-Aza) media. Moreover, the morphological transition and formation of islets-like cellular clusters were also prominent in the cells induced with the N2B27-based media with 5-Aza. The higher insulin expression revealed the augmented trans-differentiation ability of GalTKO BM-MSCs into pancreatic β-like cells in the N2B27-based media than in the ADMEM-based media. Conclusion: 5-Aza treated GalTKO BM-MSCs showed an enhanced demethylation pattern in the second CpG island of the OCT4 promoter region compared to that in the GalTKO BM-MSCs. The exposure of GalTKO pig-derived BM-MSCs to the N2B27-based microenvironment can significantly enhance their trans-differentiation ability into pancreatic β-like cells.

Differentiation of Dopaminergic Neurons from Mesenchymal-Like Stem Cells Derived from Human Umbilical Cord Vein

  • Kim, Ju-Ran;Lee, Jin-Ha;Jalin, Anjela Melinda;Lee, Chae-Yeon;Kang, Ah-Reum;Do, Byung-Rok;Kim, Hea-Kwon;Kam, Kyung-Yoon;Kang, Sung-Goo
    • 한국발생생물학회지:발생과생식
    • /
    • 제13권3호
    • /
    • pp.173-181
    • /
    • 2009
  • One of the most extensively studied populations of multipotent adult stem cells are mesenchymal stem cells (MSCs). MSCs derived from the human umbilical cord vein (HUC-MSCs) are morphologically and immunophenotypically similar to MSCs isolated from bone marrow. HUC-MSCs are multipotent stem cells, differ from hematopoietic stem cells and can be differentiated into neural cells. Since neural tissue has limited intrinsic capacity of repair after injury, the identification of alternate sources of neural stem cells has broad clinical potential. We isolated mesenchymal-like stem cells from the human umbilical cord vein, and studied transdifferentiation-promoting conditions in neural cells. Dopaminergic neuronal differentiation of HUC-MSCs was also studied. Neural differentiation was induced by adding bFGF, EGF, dimethyl sulfoxide (DMSO) and butylated hydroxyanisole (BHA) in N2 medium and N2 supplement. The immunoreactive cells for $\beta$-tubulin III, a neuron-specific marker, GFAP, an astrocyte marker, or Gal-C, an oligodendrocyte marker, were found. HUC-MSCs treated with bFGF, SHH and FGF8 were differentiated into dopaminergic neurons that were immunopositive for tyrosine hydroxylase (TH) antibody. HUC-MSCs treated with DMSO and BHA rapidly showed the morphology of multipolar neurons. Both immunocytochemistry and RT-PCR analysis indicated that the expression of a number of neural markers including NeuroD1, $\beta$-tubulin III, GFAP and nestin was markedly elevated during this acute differentiation. While the stem cell markers such as SCF, C-kit, and Stat-3 were not expressed after neural differentiation, we confirmed the differentiation of dopaminergic neurons by TH/$\beta$-tubulin III positive cells. In conclusion, HUC-MSCs can be differentiated into dopaminergic neurons and these findings suggest that HUC-MSCs are alternative cell source of therapeutic treatment for neurodegenerative diseases.

  • PDF

Regulatory Dendritic Cells Induced by Mesenchymal Stem Cells Ameliorate Dextran Sodium Sulfate-Induced Chronic Colitis in Mice

  • Jo, Hannah;Eom, Young Woo;Kim, Hyun-Soo;Park, Hong Jun;Kim, Hee Man;Cho, Mee-Yon
    • Gut and Liver
    • /
    • 제12권6호
    • /
    • pp.664-673
    • /
    • 2018
  • Background/Aims: Regulatory dendritic cells (rDCs), which can be induced by mesenchymal stem cells (MSCs), play an important role in inducing and maintaining homeostasis of regulatory T cells and exhibit anti-inflammatory functions. In this study, we investigated whether MSCs could differentiate DCs into rDCs and compared the therapeutic effects of rDCs and MSCs on dextran sodium sulfate (DSS)-induced chronic colitis mice. Methods: Immature DCs (imDCs) and lipopolysaccharide (LPS)-treated mature DCs (mDCs) were co-cultured with MSCs for 48 hours, and then the profiles of surface markers and cytokines and regulatory roles of these DCs for primary splenocytes were analyzed. In addition, the therapeutic effects of MSCs and DCs co-cultured with MSCs were compared in chronic colitis mice. Results: After co-culture of imDCs (MSC-DCs) or LPS-treated mDCs (LPS+MSC-DCs) with MSCs, the expression of CD11c, CD80, CD86, interleukin 6 (IL-6), tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$), and interferon-${\gamma}$ (IFN-${\gamma}$), was decreased, but that of CD11b, IL-10, and transforming growth factor-${\beta}$ (TGF-${\beta}$) was increased. Furthermore, MSC-DCs and LPS+MSC-DCs induced the expression of CD4, CD25, and Foxp3 in primary splenocytes isolated from mice. In DSS-induced colitis mice, MSCs and MSC-DCs increased colon length, body weight, and survival rate and induced histological improvement. Moreover, in the colon tissues, the expression of IL-6, TNF-${\alpha}$, and IFN-${\gamma}$ decreased, but that of IL-10, TGF-${\beta}$, and Foxp3 increased in the MSC- and MSC-DC-injected groups. Conclusions: Our data suggest that MSCs differentiate DCs into rDCs, which ameliorate chronic colitis. Thus, rDCs stimulated by MSCs may be therapeutically useful for the treatment of chronic inflammatory diseases.