Browse > Article
http://dx.doi.org/10.4062/biomolther.2021.058

Melatonin Protects Chronic Kidney Disease Mesenchymal Stem/Stromal Cells against Accumulation of Methylglyoxal via Modulation of Hexokinase-2 Expression  

Go, Gyeongyun (Department of Biochemistry, Soonchunhyang University College of Medicine)
Yoon, Yeo Min (Medical Science Research Institute, Soonchunhyang University Seoul Hospital)
Yoon, Sungtae (Stembio Ltd.)
Lee, Gaeun (Department of Biochemistry, Soonchunhyang University College of Medicine)
Lim, Ji Ho (Department of Biochemistry, Soonchunhyang University College of Medicine)
Han, Su-Yeon (Stembio Ltd.)
Lee, Sang Hun (Department of Biochemistry, Soonchunhyang University College of Medicine)
Publication Information
Biomolecules & Therapeutics / v.30, no.1, 2022 , pp. 28-37 More about this Journal
Abstract
Treatment options for patients with chronic kidney disease (CKD) are currently limited; therefore, there has been significant interest in applying mesenchymal stem/stromal cell (MSC)-based therapy to treat CKD. However, MSCs harvested from CKD patients tend to show diminished viability and proliferation due to sustained exposure to uremic toxins in the CKD environment, which limits their utility for cell therapy. The application of melatonin has been demonstrated to improve the therapeutic efficacy of MSCs derived from and engrafted to tissues in patients suffering from CKD, although the underlying biological mechanism has not been elucidated. In this study, we observed overexpression of hexokinase-2 (HK2) in serum samples of CKD patients and MSCs harvested from an adenine-fed CKD mouse model (CKD-mMSCs). HK2 upregulation led to increased production levels of methylglyoxal (MG), a toxic metabolic intermediate of abnormal glycolytic processes. The overabundance of HK2 and MG was associated with impaired mitochondrial function and low cell proliferation in CKD-mMSCs. Melatonin treatment inhibited the increases in HK2 and MG levels, and further improved mitochondrial function, glycolytic metabolism, and cell proliferation. Our findings suggest that identifying and characterizing metabolic regulators such as HK2 in CKD may improve the efficacy of MSCs for treating CKD and other kidney disorders.
Keywords
Melatonin; Hexokinase; Methylglyoxal; Mesenchymal stem/stromal cells; Mitochondria; Glycolysis;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Feng, J., Li, J., Wu, L., Yu, Q., Ji, J., Wu, J., Dai, W. and Guo, C. (2020) Emerging roles and the regulation of aerobic glycolysis in hepatocellular carcinoma. J. Exp. Clin. Cancer Res. 39, 126.   DOI
2 GBD Chronic Kidney Disease Collaboration (2020) Global, regional, and national burden of chronic kidney disease, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 395, 709-733.   DOI
3 Han, Y. S., Yoon, Y. M., Go, G., Lee, J. H. and Lee, S. H. (2020) Melatonin protects human renal proximal tubule epithelial cells against high glucose-mediated fibrosis via the cellular prion protein-TGFbeta-Smad signaling axis. Int. J. Med. Sci. 17, 1235-1245.   DOI
4 Hill, S. M., Belancio, V. P., Dauchy, R. T., Xiang, S., Brimer, S., Mao, L., Hauch, A., Lundberg, P. W., Summers, W., Yuan, L., Frasch, T. and Blask, D. E. (2015) Melatonin: an inhibitor of breast cancer. Endocr. Relat. Cancer 22, R183-R204.
5 Mastrolia, I., Foppiani, E. M., Murgia, A., Candini, O., Samarelli, A. V., Grisendi, G., Veronesi, E., Horwitz, E. M. and Dominici, M. (2019) Challenges in clinical development of mesenchymal stromal/stem cells: concise review. Stem Cells Transl. Med. 8, 1135-1148.   DOI
6 Pittenger, M. F., Discher, D. E., Peault, B. M., Phinney, D. G., Hare, J. M. and Caplan, A. I. (2019) Mesenchymal stem cell perspective: cell biology to clinical progress. NPJ Regen. Med. 4, 22.   DOI
7 Romagnani, P., Remuzzi, G., Glassock, R., Levin, A., Jager, K. J., Tonelli, M., Massy, Z., Wanner, C. and Anders, H. J. (2017) Chronic kidney disease. Nat. Rev. Dis. Primers 3, 17088.   DOI
8 Talib, W. H. (2018) Melatonin and cancer hallmarks. Molecules 23, 518.   DOI
9 Hevia, D., Gonzalez-Menendez, P., Fernandez-Fernandez, M., Cueto, S., Rodriguez-Gonzalez, P., Garcia-Alonso, J. I., Mayo, J. C. and Sainz, R. M. (2017) Melatonin decreases glucose metabolism in prostate cancer cells: a (13)C stable isotope-resolved metabolomic study. Int. J. Mol. Sci. 18, 1620.   DOI
10 Hickson, L. J., Eirin, A. and Lerman, L. O. (2016) Challenges and opportunities for stem cell therapy in patients with chronic kidney disease. Kidney Int. 89, 767-778.   DOI
11 Hu, C. and Li, L. (2018) Preconditioning influences mesenchymal stem cell properties in vitro and in vivo. J. Cell. Mol. Med. 22, 1428-1442.   DOI
12 Kato, M. and Natarajan, R. (2019) Epigenetics and epigenomics in diabetic kidney disease and metabolic memory. Nat. Rev. Nephrol. 15, 327-345.   DOI
13 Li, Y., Li, S., Zhou, Y., Meng, X., Zhang, J. J., Xu, D. P. and Li, H. B. (2017) Melatonin for the prevention and treatment of cancer. Oncotarget 8, 39896-39921.   DOI
14 Reiter, R. J., Rosales-Corral, S. A., Tan, D. X., Acuna-Castroviejo, D., Qin, L., Yang, S. F. and Xu, K. (2017) Melatonin, a full service anti-cancer agent: Inhibition of initiation, progression and metastasis. Int. J. Mol. Sci. 18, 843.   DOI
15 Keshtkar, S., Azarpira, N. and Ghahremani, M. H. (2018) Mesenchymal stem cell-derived extracellular vesicles: novel frontiers in regenerative medicine. Stem Cell Res. Ther. 9, 63.   DOI
16 Lan, R., Geng, H., Singha, P. K., Saikumar, P., Bottinger, E. P., Weinberg, J. M. and Venkatachalam, M. A. (2016) Mitochondrial pathology and glycolytic shift during proximal tubule atrophy after ischemic AKI. J. Am. Soc. Nephrol. 27, 3356-3367.   DOI
17 Lee, J. H., Yoon, Y. M., Song, K. H., Noh, H. and Lee, S. H. (2020) Melatonin suppresses senescence-derived mitochondrial dysfunction in mesenchymal stem cells via the HSPA1L-mitophagy pathway. Aging Cell 19, e13111.   DOI
18 Lee, J. H., Yun, C. W., Hur, J. and Lee, S. H. (2018) Fucoidan rescues p-cresol-induced cellular senescence in mesenchymal stem cells via FAK-Akt-TWIST axis. Mar. Drugs 16, 121.   DOI
19 Liu, H., Liu, N., Cheng, Y., Jin, W., Zhang, P., Wang, X., Yang, H., Xu, X., Wang, Z. and Tu, Y. (2017) Hexokinase 2 (HK2), the tumor promoter in glioma, is downregulated by miR-218/Bmi1 pathway. PLoS ONE 12, e0189353.   DOI
20 Wang, Y., Wang, P., Zheng, X. and Du, X. (2018) Therapeutic strategies of melatonin in cancer patients: a systematic review and metaanalysis. OncoTargets Ther. 11, 7895-7908.   DOI
21 Yao, C. H., Wang, R., Wang, Y., Kung, C. P., Weber, J. D. and Patti, G. J. (2019) Mitochondrial fusion supports increased oxidative phosphorylation during cell proliferation. eLife 8, e41351.   DOI
22 Yoon, Y. M., Go, G., Yun, C. W., Lim, J. H. and Lee, S. H. (2020b) Knockdown of CK2alpha reduces P-cresol-induced fibrosis in human renal proximal tubule epithelial cells via the downregulation of profilin-1. Int. J. Med. Sci. 17, 2850-2860.   DOI
23 Yuan, X., Logan, T. M. and Ma, T. (2019) Metabolism in human mesenchymal stromal cells: a missing link between hMSC biomanufacturing and therapy? Front. Immunol. 10, 977.   DOI
24 Yun, C. W. and Lee, S. H. (2019) Potential and therapeutic efficacy of cell-based therapy using mesenchymal stem cells for acute/chronic kidney disease. Int. J. Mol. Sci. 20, 1619.   DOI
25 Mao, L., Dauchy, R. T., Blask, D. E., Dauchy, E. M., Slakey, L. M., Brimer, S., Yuan, L., Xiang, S., Hauch, A., Smith, K., Frasch, T., Belancio, V. P., Wren, M. A. and Hill, S. M. (2016) Melatonin suppression of aerobic glycolysis (Warburg effect), survival signalling and metastasis in human leiomyosarcoma. J. Pineal Res. 60, 167-177.   DOI
26 Qi, X. and Wang, J. (2020) Melatonin improves mitochondrial biogenesis through the AMPK/PGC1alpha pathway to attenuate ischemia/reperfusion-induced myocardial damage. Aging (Albany NY) 12, 7299-7312.   DOI
27 Rabbani, N. and Thornalley, P. J. (2019) Hexokinase-2 glycolytic overload in diabetes and ischemia-reperfusion injury. Trends Endocrinol. Metab. 30, 419-431.   DOI
28 Lee, J. H., Yoon, Y. M., Han, Y. S., Jung, S. K. and Lee, S. H. (2019) Melatonin protects mesenchymal stem cells from autophagy-mediated death under ischaemic ER-stress conditions by increasing prion protein expression. Cell Prolif. 52, e12545.   DOI
29 Yoon, Y. M., Lee, J. H., Song, K. H., Noh, H. and Lee, S. H. (2020c) Melatonin-stimulated exosomes enhance the regenerative potential of chronic kidney disease-derived mesenchymal stem/stromal cells via cellular prion proteins. J. Pineal Res. 68, e12632.   DOI
30 Reiter, R. J., Sharma, R., Ma, Q., Rorsales-Corral, S. and de Almeida Chuffa, L. G. (2020) Melatonin inhibits Warburg-dependent cancer by redirecting glucose oxidation to the mitochondria: a mechanistic hypothesis. Cell. Mol. Life Sci. 77, 2527-2542.   DOI
31 Lv, J. C. and Zhang, L. X. (2019) Prevalence and disease burden of chronic kidney disease. Adv. Exp. Med. Biol. 1165, 3-15.   DOI
32 Hu, C. and Li, L. (2019) Melatonin plays critical role in mesenchymal stem cell-based regenerative medicine in vitro and in vivo. Stem Cell Res. Ther. 10, 13.   DOI
33 Nigam, S. K. and Bush, K. T. (2019) Uraemic syndrome of chronic kidney disease: altered remote sensing and signalling. Nat. Rev. Nephrol. 15, 301-316.   DOI
34 Bhatia, D., Chung, K. P., Nakahira, K., Patino, E., Rice, M. C., Torres, L. K., Muthukumar, T., Choi, A. M., Akchurin, O. M. and Choi, M. E. (2019) Mitophagy-dependent macrophage reprogramming protects against kidney fibrosis. JCI Insight 4, e132826.   DOI
35 Yan, X. J., Yu, X., Wang, X. P., Jiang, J. F., Yuan, Z. Y., Lu, X., Lei, F. and Xing, D. M. (2017) Mitochondria play an important role in the cell proliferation suppressing activity of berberine. Sci. Rep. 7, 41712.   DOI
36 Thalakiriyawa, D. S., Jayasooriya, P. R. and Dissanayaka, W. L. (2021) Regenerative potential of mesenchymal stem cell derived extracellular vesicles. Curr. Mol. Med. doi: 10.2174/1566524021666210211114453 [Online ahead of print].   DOI
37 Fu, Z., Jiao, Y., Wang, J., Zhang, Y., Shen, M., Reiter, R. J., Xi, Q. and Chen, Y. (2020) Cardioprotective role of melatonin in acute myocardial infarction. Front. Physiol. 11, 366.   DOI
38 Reiter, R. J., Sharma, R. and Rosales-Corral, S. (2021) Anti-Warburg effect of melatonin: a proposed mechanism to explain its inhibition of multiple diseases. Int. J. Mol. Sci. 22, 764.   DOI
39 Sanchez-Sanchez, A. M., Antolin, I., Puente-Moncada, N., Suarez, S., Gomez-Lobo, M., Rodriguez, C. and Martin, V. (2015) Melatonin cytotoxicity is associated to Warburg effect inhibition in Ewing sarcoma cells. PLoS ONE 10, e0135420.   DOI
40 Galli, S., Labato, M. I., Bal de Kier Joffe, E., Carreras, M. C. and Poderoso, J. J. (2003) Decreased mitochondrial nitric oxide synthase activity and hydrogen peroxide relate persistent tumoral proliferation to embryonic behavior. Cancer Res. 63, 6370-6377.
41 Ohashi, N., Ishigaki, S. and Isobe, S. (2019) The pivotal role of melatonin in ameliorating chronic kidney disease by suppression of the renin-angiotensin system in the kidney. Hypertens. Res. 42, 761-768.   DOI
42 Gopu, V., Fan, L., Shetty, R. S., Nagaraja, M. R. and Shetty, S. (2020) Caveolin-1 scaffolding domain peptide regulates glucose metabolism in lung fibrosis. JCI Insight 5, e137969.   DOI
43 Han, Y. S., Kim, S. M., Lee, J. H., Jung, S. K., Noh, H. and Lee, S. H. (2019) Melatonin protects chronic kidney disease mesenchymal stem cells against senescence via PrPC-dependent enhancement of the mitochondrial function. J. Pineal Res. 66, e12535.   DOI
44 Breyer, M. D. and Susztak, K. (2016) Developing treatments for chronic kidney disease in the 21st century. Semin. Nephrol. 36, 436-447.   DOI
45 Yoon, Y. M., Go, G., Yun, C. W., Lim, J. H., Lee, J. H. and Lee, S. H. (2020a) Melatonin suppresses renal cortical fibrosis by inhibiting cytoskeleton reorganization and mitochondrial dysfunction through regulation of miR-4516. Int. J. Mol. Sci. 21, 5323.   DOI
46 Antico Arciuch, V. G., Elguero, M. E., Poderoso, J. J. and Carreras, M. C. (2012) Mitochondrial regulation of cell cycle and proliferation. Antioxid. Redox Signal. 16, 1150-1180.   DOI
47 Smith, J. A., Stallons, L. J. and Schnellmann, R. G. (2014) Renal cortical hexokinase and pentose phosphate pathway activation through the EGFR/Akt signaling pathway in endotoxin-induced acute kidney injury. Am. J. Physiol. Renal Physiol. 307, F435-F444.
48 Tordjman, S., Chokron, S., Delorme, R., Charrier, A., Bellissant, E., Jaafari, N. and Fougerou, C. (2017) Melatonin: Pharmacology, functions and therapeutic benefits. Curr. Neuropharmacol. 15, 434-443.   DOI
49 Xie, N., Tan, Z., Banerjee, S., Cui, H., Ge, J., Liu, R. M., Bernard, K., Thannickal, V. J. and Liu, G. (2015) Glycolytic reprogramming in myofibroblast differentiation and lung fibrosis. Am. J. Respir. Crit. Care Med. 192, 1462-1474.   DOI
50 Yin, X., Choudhury, M., Kang, J. H., Schaefbauer, K. J., Jung, M. Y., Andrianifahanana, M., Hernandez, D. M. and Leof, E. B. (2019) Hexokinase 2 couples glycolysis with the profibrotic actions of TGF-β. Sci. Signal. 12, eaax4067.   DOI
51 Yoon, Y. M., Kim, H. J., Lee, J. H. and Lee, S. H. (2019) Melatonin enhances mitophagy by upregulating expression of heat shock 70 kDa protein 1L in human mesenchymal stem cells under oxidative stress. Int. J. Mol. Sci. 20, 4545.   DOI