Transdifferentiation of α-1,3-galactosyltransferase knockout pig bone marrow derived mesenchymal stem cells into pancreatic β-like cells by microenvironment modulation |
Ullah, Imran
(Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration)
Lee, Ran (Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration) Oh, Keon Bong (Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration) Hwang, Seongsoo (Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration) Kim, Youngim (Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration) Hur, Tai-Young (Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration) Ock, Sun A (Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration) |
1 | Bouwens L, Houbracken I, Mfopou JK. The use of stem cells for pancreatic regeneration in diabetes mellitus. Nat Rev Endocrinol 2013;9:598-606. https://doi.org/10.1038/nrendo.2013.145 DOI |
2 | Godfrey KJ, Mathew B, Bulman JC, Shah O, Clement S, Gallicano GI. Stem cell-based treatments for Type 1 diabetes mellitus: Bone marrow, embryonic, hepatic, pancreatic and induced pluripotent stem cells. Diabet Med 2012;29:14-23. https://doi.org/10.1111/j.1464-5491.2011.03433.x DOI |
3 | Millman JR, Xie C, Van Dervort A, Gurtler M, Pagliuca FW, Melton DA. Generation of stem cell-derived -cells from patients with type 1 diabetes. Nat Commun 2016;7:11463. https://doi.org/10.1038/ncomms11463 DOI |
4 | Bellin MD, Barton FB, Heitman A, et al. Potent induction immunotherapy promotes long-term insulin independence after islet transplantation in type 1 diabetes. Am J Transplant 2012;12:1576-83. https://doi.org/10.1111/j.1600-6143.2011.03977.x DOI |
5 | Lumelsky N, Blondel O, Laeng P, Velasco I, Ravin R, McKay R. Differentiation of embryonic stem cells to insulin-secreting structures similar to pancreatic Islets. Science 2001;292:1389-94. https://doi.org/10.1126/science.1058866 DOI |
6 | Jiang J, Au M, Lu K, et al. Generation of insulin-producing islet-like clusters from human embryonic stem cells. Stem Cells 2007;25:1940-53. https://doi.org/10.1634/stemcells.2006-0761 DOI |
7 | Gottlicher M, Minucci S, Zhu P, et al. Valproic acid defines a novel class of HDAC inhibitors inducing differentiation of transformed cells. EMBO J 2001;20:6969-78. https://doi.org/10.1093/emboj/20.24.6969 DOI |
8 | Sprangers B, Waer M, Billiau AD. Xenotransplantation: where are we in 2008? Kidney Int 2008;74:14-21. https://doi.org/10.1038/ki.2008.135 DOI |
9 | Ahn KS, Kim YJ, Kim M, et al. Resurrection of an alpha-1,3-galactosyltransferase gene-targeted miniature pig by recloning using postmortem ear skin fibroblasts. Theriogenology 2011;75:933-9. https://doi.org/10.1016/j.theriogenology.2010.11. 001 DOI |
10 | Ock SA, Jeon BJ, Rho GJ. Comparative characterization of porcine mesenchymal stem cells derived from bone marrow extract and skin tissues. Tissue Eng Part C Methods 2010;16:1481-91. http://doi.org/10.1089/ten.tec.2010.0149 DOI |
11 | Wu SC, Zhang Y. Active DNA demethylation: many roads lead to Rome. Nat Rev Mol Cell Biol 2010;11:607-20. https://doi.org/10.1038/nrm2950 DOI |
12 | Chiu CP, Blau HM. 5-Azacytidine permits gene activation in a previously noninducible cell type. Cell 1985;40:417-24. https://doi.org/10.1016/0092-8674(85)90155-2 DOI |
13 | Gao Y, Jammes H, Rasmussen MA, et al. Epigenetic regulation of gene expression in porcine epiblast, hypoblast, trophectoderm and epiblast-derived neural progenitor cells. Epigenetics 2011;6:1149-61. https://doi.org/10.4161/epi.6.9.16954 DOI |
14 | Peister A, Mellad JA, Larson BL, Hall BM, Gibson LF, Prockop DJ. Adult stem cells from bone marrow (MSCs) isolated from different strains of inbred mice vary in surface epitopes, rates of proliferation, and differentiation potential. Blood 2004;103:1662-8. https://doi.org/10.1182/blood-2003-09-3070 DOI |
15 | Jones PA. Effects of 5-azacytidine and its 2'-deoxyderivative on cell differentiation and DNA methylation. Pharmacol Ther 1985;28:17-27. https://doi.org/10.1016/0163-7258(85)90080-4 DOI |
16 | Conrad E, Stein R, Hunter CS. Revealing transcription factors during human pancreatic cell development. Trends Endocrinol Metab 2014;25:407-14. https://doi.org/10.1016/j.tem.2014. 03.013 DOI |
17 | Yao S, Chen S, Clark J, et al. Long-term self-renewal and directed differentiation of human embryonic stem cells in chemically defined conditions. Proc Natl Acad Sci USA 2006;103:6907-12. https://doi.org/10.1073/pnas.0602280103 DOI |
18 | Hansson M, Tonning A, Frandsen U, et al. Artifactual insulin release from differentiated embryonic stem cells. Diabetes 2004;53:2603-9. https://doi.org/10.2337/diabetes.53.10.2603 DOI |
19 | Maherali N, Sridharan R, Xie W, et al. Directly reprogrammed fibroblasts show global epigenetic remodeling and widespread tissue contribution. Cell Stem Cell 2007;1:55-70. https://doi.oarg/10.1016/j.stem.2007.05.014 DOI |
20 | Deb-Rinker P, Ly D, Jezierski A, Sikrska M, Walker PR. Sequential DNA methylation of the Nanog and Oct-4 upstream regions in human NT2 cells during neuronal differentiation. J Biol Chem 2005;280:6257-60. https://doi.org/10.1074/jbc.C400479200 DOI |
21 | Fan A, Ma K, An X, et al. Effects of TET1 knockdown on gene expression and DNA methylation in porcine induced pluripotent stem cells. Reproduction 2013;146:569-79 https://doi.org/10.1530/REP-13-0212 DOI |
22 | Ueyama H, Horibe T, Hinotsu S, et al. Chromosomal variability of human mesenchymal stem cells cultured under hypoxic conditions. J Cell Mol Med 2012;16:72-82. https://doi.org/10.1111/j.1582-4934.2011.01303.x DOI |
23 | Pennarossa G, Maffei S, Campagnol M, et al. Brief demethylation step allows the conversion of adult human skin fibroblasts into insulin-secreting cells. Proc Natl Acad Sci USA 2013;110:8948-53. https://doi.org/10.1073/pnas.1220637110 DOI |
24 | Jafarian A, Taghikhani M, Abroun S, Pourpak Z, Allahverdi A, Soleimani M. Generation of high-yield insulin producing cells from human bone marrow mesenchymal stem cells. Mol Biol Rep 2014;4:4783-94. https://doi.org/10.1007/s11033- 014-3349-5 |
25 | Gabr MM, Zakaria MM, Refaie AF, et al. Insulin producing cells from adult human bone marrow mesenchymal stem cells control streptozotocin-induced diabetes in nude mice. Cell Transplant 2013;22:133-45. https://doi.org/10.3727/09636 8912X647162 DOI |
26 | Belame Shivakumar S, Bharti D, Baregundi Subbarao R, et al. Pancreatic endocrine-like cells differentiated from human umbilical cords Wharton's jelly mesenchymal stem cells using small molecules. J Cell Physiol 2019;234:3933-47. https://doi.org/10.1002/jcp.27184 DOI |
27 | Takemitsu H, Zhao D, Ishikawa S, Michishita M, Arai T, Yamamoto I. Mechanism of insulin production in canine bone marrow derived mesenchymal stem cells. Gen Comp Endocrinol 2013;189:1-6. https://doi.org/10.1016/j.ygcen.2013.04.009 DOI |
28 | Xie H, Wang Y, Zhang H, Qi H, Zhou H, Li FR. Role of injured pancreatic extract promotes bone marrow-derived mesenchymal stem cells efficiently differentiate into insulin-producing cells. PloS One 2013;8:e76056. https://doi.org/10.1371/journal.pone.0076056 DOI |
29 | Li M, Liu G-H, Izpisua Belmonte JC. Navigating the epigenetic landscape of pluripotent stem cells. Nat Rev Mol Cell Biol 2012;13:524-35. https://doi.org/10.1038/nrm3393 DOI |