DOI QR코드

DOI QR Code

Comparative characteristic study from bone marrow-derived mesenchymal stem cells

  • Purwaningrum, Medania (Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Veterinary Pharmacology and Stem Cell Research Laboratory, Faculty of Veterinary Science, Chulalongkorn University) ;
  • Jamilah, Nabila Syarifah (Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Veterinary Pharmacology and Stem Cell Research Laboratory, Faculty of Veterinary Science, Chulalongkorn University) ;
  • Purbantoro, Steven Dwi (Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Veterinary Pharmacology and Stem Cell Research Laboratory, Faculty of Veterinary Science, Chulalongkorn University) ;
  • Sawangmake, Chenphop (Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Veterinary Pharmacology and Stem Cell Research Laboratory, Faculty of Veterinary Science, Chulalongkorn University) ;
  • Nantavisai, Sirirat (Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Veterinary Pharmacology and Stem Cell Research Laboratory, Faculty of Veterinary Science, Chulalongkorn University)
  • Received : 2021.04.29
  • Accepted : 2021.08.05
  • Published : 2021.11.30

Abstract

Tissue engineering has been extensively investigated and proffered to be a potential platform for novel tissue regeneration. The utilization of mesenchymal stem cells (MSCs) from various sources has been widely explored and compared. In this regard, MSCs derived from bone marrow have been proposed and described as a promising cell resource due to their high yield of isolated cells with colony-forming potential, self-renewal capacity, MSC surface marker expression, and multi-lineage differentiation capacities in vitro. However, there is evidence for bone marrow MSCs (BM-MSCs) both in vitro and in vivo from different species presenting identical and distinct potential stemness characteristics. In this review, the fundamental knowledge of the growth kinetics and stemness properties of BM-MSCs in different animal species and humans are compared and summarized. Finally, to provide a full perspective, this review will procure results of current information studies focusing on the use of BM-MSCs in clinical practice.

Keywords

Acknowledgement

Sawangmake C was supported by research supporting grant of the Faculty of Veterinary Science; Chulalongkorn Academic Advancement into Its 2nd Century Project; Veterinary Stem Cell and Bioengineering Research Unit, Ratchadaphiseksomphot Endowment Fund, Chulalongkorn University; and Government Research Fund. This work was supported by The First International Conference of Advanced Veterinary Science and Technologies for Sustainable Development (ICAVESS) on April 28-29 2021 in Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia.

References

  1. de Isla N, Huseltein C, Jessel N, Pinzano A, Decot V, Magdalou J, et al. Introduction to tissue engineering and application for cartilage engineering. Biomed Mater Eng. 2010;20(3):127-133.
  2. Gholami A, Dadkhah K, Anijdan SHM. Nanofiber and stem cell to bone, cartilage and muscle tissue engineering. Scholars Acad J Biosci. 2015;3(7):624-626.
  3. Yamzon JL, Kokorowski P, Koh CJ. Stem cells and tissue engineering applications of the genitourinary tract. Pediatr Res. 2008;63(5):472-477. https://doi.org/10.1203/PDR.0b013e31816a704a
  4. Caddeo S, Boffito M, Sartori S. Tissue engineering approaches in the design of healthy and pathological in vitro tissue models. Front Bioeng Biotechnol. 2017;5:40. https://doi.org/10.3389/fbioe.2017.00040
  5. Berthiaume F, Maguire TJ, Yarmush ML. Tissue engineering and regenerative medicine: history, progress, and challenges. Annu Rev Chem Biomol Eng. 2011;2(1):403-430. https://doi.org/10.1146/annurev-chembioeng-061010-114257
  6. Levenberg S, Langer R. Advances in tissue engineering. Curr Top Dev Biol. 2004;61:113-134. https://doi.org/10.1016/S0070-2153(04)61005-2
  7. Egusa H, Sonoyama W, Nishimura M, Atsuta I, Akiyama K. Stem cells in dentistry--Part II: Clinical applications. J Prosthodont Res. 2012;56(4):229-248. https://doi.org/10.1016/j.jpor.2012.10.001
  8. Wang W, Yuan C, Liu Z, Geng T, Li X, Wei L, et al. Characteristic comparison between canine and human dental mesenchymal stem cells for periodontal regeneration research in preclinical animal studies. Tissue Cell. 2020;67:101405. https://doi.org/10.1016/j.tice.2020.101405
  9. Joannides A, Gaughwin P, Schwiening C, Majed H, Sterling J, Compston A, et al. Efficient generation of neural precursors from adult human skin: astrocytes promote neurogenesis from skin-derived stem cells. Lancet. 2004;364(9429):172-178. https://doi.org/10.1016/S0140-6736(04)16630-0
  10. Leuning DG, Reinders ME, Li J, Peired AJ, Lievers E, de Boer HC, et al. Clinical-grade isolated human kidney perivascular stromal cells as an organotypic cell source for kidney regenerative medicine. Stem Cells Transl Med. 2017;6(2):405-418. https://doi.org/10.5966/sctm.2016-0053
  11. El-Kehdy H, Pourcher G, Zhang W, Hamidouche Z, Goulinet-Mainot S, Sokal E, et al. Hepatocytic differentiation potential of human fetal liver mesenchymal stem cells: in vitro and in vivo evaluation. Stem Cells Int. 2016;2016:6323486. https://doi.org/10.1155/2016/6323486
  12. de Paula DR, Capuano V, Filho DM, Carneiro AC, de Oliveira Crema V, de Oliveira LF, et al. Biological properties of cardiac mesenchymal stem cells in rats with diabetic cardiomyopathy. Life Sci. 2017;188:45-52. https://doi.org/10.1016/j.lfs.2017.08.034
  13. Crisan M, Yap S, Casteilla L, Chen CW, Corselli M, Park TS, et al. A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell. 2008;3(3):301-313. https://doi.org/10.1016/j.stem.2008.07.003
  14. Khatri M, O'Brien TD, Sharma JM. Isolation and differentiation of chicken mesenchymal stem cells from bone marrow. Stem Cells Dev. 2009;18(10):1485-1492. https://doi.org/10.1089/scd.2008.0223
  15. Jiang Y, Vaessen B, Lenvik T, Blackstad M, Reyes M, Verfaillie CM. Multipotent progenitor cells can be isolated from postnatal murine bone marrow, muscle, and brain. Exp Hematol. 2002;30(8):896-904. https://doi.org/10.1016/S0301-472X(02)00869-X
  16. Tropel P, Noel D, Platet N, Legrand P, Benabid AL, Berger F. Isolation and characterisation of mesenchymal stem cells from adult mouse bone marrow. Exp Cell Res. 2004;295(2):395-406. https://doi.org/10.1016/j.yexcr.2003.12.030
  17. Kumar K, Das K, Madhusoodan AP, Kumar A, Singh P, Mondal T, et al. Rat bone marrow derived mesenchymal stem cells differentiate to germ cell like cells. bioRxiv 2018. Epub ahead of print. doi:10.1101/418962.
  18. Tan SL, Ahmad TS, Selvaratnam L, Kamarul T. Isolation, characterization and the multi-lineage differentiation potential of rabbit bone marrow-derived mesenchymal stem cells. J Anat. 2013;222(4):437-450. https://doi.org/10.1111/joa.12032
  19. Martin DR, Cox NR, Hathcock TL, Niemeyer GP, Baker HJ. Isolation and characterization of multipotential mesenchymal stem cells from feline bone marrow. Exp Hematol. 2002;30(8):879-886. https://doi.org/10.1016/S0301-472X(02)00864-0
  20. Takemitsu H, Zhao D, Yamamoto I, Harada Y, Michishita M, Arai T. Comparison of bone marrow and adipose tissue-derived canine mesenchymal stem cells. BMC Vet Res. 2012;8(1):150. https://doi.org/10.1186/1746-6148-8-150
  21. Shang Q, Wang Z, Liu W, Shi Y, Cui L, Cao Y. Tissue-engineered bone repair of sheep cranial defects with autologous bone marrow stromal cells. J Craniofac Surg. 2001;12(6):586-593. https://doi.org/10.1097/00001665-200111000-00017
  22. Bosnakovski D, Mizuno M, Kim G, Takagi S, Okumura M, Fujinaga T. Isolation and multilineage differentiation of bovine bone marrow mesenchymal stem cells. Cell Tissue Res. 2005;319(2):243-253. https://doi.org/10.1007/s00441-004-1012-5
  23. McDaniel JS, Antebi B, Pilia M, Hurtgen BJ, Belenkiy S, Necsoiu C, et al. Quantitative assessment of optimal bone marrow site for the isolation of porcine mesenchymal stem cells. Stem Cells Int. 2017;2017:1836960.
  24. Vidal MA, Walker NJ, Napoli E, Borjesson DL. Evaluation of senescence in mesenchymal stem cells isolated from equine bone marrow, adipose tissue, and umbilical cord tissue. Stem Cells Dev. 2012;21(2):273-283. https://doi.org/10.1089/scd.2010.0589
  25. Sharma AK, Bury MI, Marks AJ, Fuller NJ, Meisner JW, Tapaskar N, et al. A nonhuman primate model for urinary bladder regeneration using autologous sources of bone marrow-derived mesenchymal stem cells. Stem Cells. 2011;29(2):241-250. https://doi.org/10.1002/stem.568
  26. Lee SH. The advantages and limitations of mesenchymal stem cells in clinical application for treating human diseases. Osteoporos Sarcopenia. 2018;4:150. https://doi.org/10.1016/j.afos.2018.11.083
  27. Suto EG, Mabuchi Y, Suzuki N, Suzuki K, Ogata Y, Taguchi M, et al. Prospectively isolated mesenchymal stem/stromal cells are enriched in the CD73+ population and exhibit efficacy after transplantation. Sci Rep. 2017;7(1):4838. https://doi.org/10.1038/s41598-017-05099-1
  28. Pittenger MF, Discher DE, Peault BM, Phinney DG, Hare JM, Caplan AI. Mesenchymal stem cell perspective: cell biology to clinical progress. NPJ Regen Med. 2019;4:22. https://doi.org/10.1038/s41536-019-0083-6
  29. Wu Y, Zhao RC, Tredget EE. Concise review: bone marrow-derived stem/progenitor cells in cutaneous repair and regeneration. Stem Cells 2010;28(5):905-915. https://doi.org/10.1002/stem.420
  30. Quimby JM, Borjesson DL. Mesenchymal stem cell therapy in cats: current knowledge and future potential. J Feline Med Surg. 2018;20(3):208-216. https://doi.org/10.1177/1098612x18758590
  31. Gomes IS, de Oliveira VC, Pinheiro AO, Roballo KCS, de Araujo GSM, Veronezi JC, et al. Bone marrow stem cell applied in the canine veterinary clinics. Pesqui Vet Bras. 2017;37:1139-1145. https://doi.org/10.1590/s0100-736x2017001000016
  32. Friedenstein AJ, Chailakhyan RK, Gerasimov UV. Bone marrow osteogenic stem cells: in vitro cultivation and transplantation in diffusion chambers. Cell Tissue Kinet. 1987;20(3):263-272.
  33. Bianco P, Robey PG, Simmons PJ. Mesenchymal stem cells: revisiting history, concepts, and assays. Cell Stem Cell. 2008;2(4):313-319. https://doi.org/10.1016/j.stem.2008.03.002
  34. Caplan AI. Mesenchymal stem cells. J Orthop Res. 1991;9(5):641-650. https://doi.org/10.1002/jor.1100090504
  35. Dias LD, Casali KR, Ghem C, da Silva MK, Sausen G, Palma PB, et al. Mesenchymal stem cells from sternum: the type of heart disease, ischemic or valvular, does not influence the cell culture establishment and growth kinetics. J Transl Med. 2017;15(1):161. https://doi.org/10.1186/s12967-017-1262-0
  36. Drela K, Stanaszek L, Snioch K, Kuczynska Z, Wrobel M, Sarzynska S, et al. Bone marrow-derived from the human femoral shaft as a new source of mesenchymal stem/stromal cells: an alternative cell material for banking and clinical transplantation. Stem Cell Res Ther. 2020;11(1):262. https://doi.org/10.1186/s13287-020-01697-5
  37. Fragkakis EM, El-Jawhari JJ, Dunsmuir RA, Millner PA, Rao AS, Henshaw KT, et al. Vertebral body versus iliac crest bone marrow as a source of multipotential stromal cells: Comparison of processing techniques, tri-lineage differentiation and application on a scaffold for spine fusion. PLoS One. 2018;13(5):e0197969. https://doi.org/10.1371/journal.pone.0197969
  38. Chang YP, Hong HP, Lee YH, Liu IH. The canine epiphyseal-derived mesenchymal stem cells are comparable to bone marrow derived-mesenchymal stem cells. J Vet Med Sci. 2015;77(3):273-280. https://doi.org/10.1292/jvms.14-0265
  39. Townsend FI 3rd. Bone marrow aspiration in dogs and cats. Lab Anim (NY). 2008;37(11):497-498. https://doi.org/10.1038/laban1108-497
  40. Smajilagic A, Aljicevic M, Redzic A, Filipovic S, Lagumdzija A. Rat bone marrow stem cells isolation and culture as a bone formative experimental system. Bosn J Basic Med Sci. 2013;13(1):27-30. https://doi.org/10.17305/bjbms.2013.2409
  41. Soleimani M, Nadri S. A protocol for isolation and culture of mesenchymal stem cells from mouse bone marrow. Nat Protoc. 2009;4(1):102-106. https://doi.org/10.1038/nprot.2008.221
  42. Mushtaq M, Kovalevska L, Darekar S, Abramsson A, Zetterberg H, Kashuba V, et al. Cell stemness is maintained upon concurrent expression of RB and the mitochondrial ribosomal protein S18-2. Proc Natl Acad Sci U S A. 2020;117(27):15673-15683. https://doi.org/10.1073/pnas.1922535117
  43. Aponte PM, Caicedo A. Stemness in cancer: stem cells, cancer stem cells, and their microenvironment. Stem Cells Int. 2017;2017:5619472. https://doi.org/10.1155/2017/5619472
  44. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8(4):315-317. https://doi.org/10.1080/14653240600855905
  45. Liu R, Chang W, Wei H, Zhang K. Comparison of the biological characteristics of mesenchymal stem cells derived from bone marrow and skin. Stem Cells Int. 2016;2016:3658798.
  46. Nantavisai S, Pisitkun T, Osathanon T, Pavasant P, Kalpravidh C, Dhitavat S, et al. Systems biology analysis of osteogenic differentiation behavior by canine mesenchymal stem cells derived from bone marrow and dental pulp. Sci Rep. 2020;10(1):20703. https://doi.org/10.1038/s41598-020-77656-0
  47. Humenik F, Cizkova D, Cikos S, Luptakova L, Madari A, Mudronova D, et al. Canine bone marrow-derived mesenchymal stem cells: genomics, proteomics and functional analyses of paracrine factors. Mol Cell Proteomics. 2019;18(9):1824-1835. https://doi.org/10.1074/mcp.ra119.001507
  48. Wang X, Li C, Gong H. Morphological and functional changes in bone marrow mesenchymal stem cells in rats with heart failure. Exp Ther Med. 2017;13(6):2888-2892. https://doi.org/10.3892/etm.2017.4341
  49. Sung JH, Yang HM, Park JB, Choi GS, Joh JW, Kwon CH, et al. Isolation and characterization of mouse mesenchymal stem cells. Transplant Proc. 2008;40(8):2649-2654. https://doi.org/10.1016/j.transproceed.2008.08.009
  50. Chambers I, Tomlinson SR. The transcriptional foundation of pluripotency. Development. 2009;136(14):2311-2322. https://doi.org/10.1242/dev.024398
  51. Bhandari DR, Seo KW, Roh KH, Jung JW, Kang SK, Kang KS. REX-1 expression and p38 MAPK activation status can determine proliferation/differentiation fates in human mesenchymal stem cells. PLoS One. 2010;5(5):e10493. https://doi.org/10.1371/journal.pone.0010493
  52. Matic I, Antunovic M, Brkic S, Josipovic P, Mihalic KC, Karlak I, et al. Expression of OCT-4 and SOX-2 in bone marrow-derived human mesenchymal stem cells during osteogenic differentiation. Open Access Maced J Med Sci. 2016;4(1):9-16. https://doi.org/10.3889/oamjms.2016.008
  53. Pierantozzi E, Gava B, Manini I, Roviello F, Marotta G, Chiavarelli M, et al. Pluripotency regulators in human mesenchymal stem cells: expression of NANOG but not of OCT-4 and SOX-2. Stem Cells Dev. 2011;20(5):915-923. https://doi.org/10.1089/scd.2010.0353
  54. Shahsavari A, Weeratunga P, Ovchinnikov DA, Whitworth DJ. Pluripotency and immunomodulatory signatures of canine induced pluripotent stem cell-derived mesenchymal stromal cells are similar to harvested mesenchymal stromal cells. Sci Rep. 2021;11(1):3486. https://doi.org/10.1038/s41598-021-82856-3
  55. Fafian-Labora J, Fernandez-Pernas P, Fuentes I, De Toro J, Oreiro N, Sangiao-Alvarellos S, et al. Influence of age on rat bone-marrow mesenchymal stem cells potential. Sci Rep. 2015;5(1):16765. https://doi.org/10.1038/srep16765
  56. Chaudhary JK, Rath P. A simple method for isolation, propagation, characterization, and differentiation of adult mouse bone marrow-derived multipotent mesenchymal stem cells. J Cell Sci Ther. 2017;8:261.
  57. Bellotti C, Capanni C, Lattanzi G, Donati D, Lucarelli E, Duchi S. Detection of mesenchymal stem cells senescence by prelamin A accumulation at the nuclear level. Springerplus. 2016;5(1):1427. https://doi.org/10.1186/s40064-016-3091-7
  58. Franken NA, Rodermond HM, Stap J, Haveman J, van Bree C. Clonogenic assay of cells in vitro. Nat Protoc. 2006;1(5):2315-2319. https://doi.org/10.1038/nprot.2006.339
  59. Kazemi S, Parivar K, Roudbari NH, Yaghmaei P, Sadeghi B. Growth kinetic comparison of human mesenchymal stem cells from bone marrow, adipose tissue and decidua. Med Sci. 2020;24:223-234.
  60. Bertolo A, Steffen F, Malonzo-Marty C, Stoyanov J. Canine mesenchymal stem cell potential and the importance of dog breed: implication for cell-based therapies. Cell Transplant. 2015;24(10):1969-1980. https://doi.org/10.3727/096368914X685294
  61. Kamishina H, Farese JP, Storm JA, Cheeseman JA, Clemmons RM. The frequency, growth kinetics, and osteogenic/adipogenic differentiation properties of canine bone marrow stromal cells. In Vitro Cell Dev Biol Anim. 2008;44(10):472-479. https://doi.org/10.1007/s11626-008-9137-6
  62. Maciel BB, Rebelatto CLK, Brofman PRS, Brito HFV, Patricio LFL, Cruz MA, et al. Morphology and morphometry of feline bone marrow-derived mesenchymal stem cells in culture. Pesq Vet Bras. 2014;34(11):1127-1134. https://doi.org/10.1590/S0100-736X2014001100016
  63. Sangeetha P, Maiti S, Divya M, Shivaraju S, Raguvaran R, Rafee MA, et al. Mesenchymal stem cells derived from rat bone marrow (rBM MSC): techniques for isolation, expansion and differentiation. J Stem Cell Res Ther. 2017;3(3):272-277.
  64. Yusop N, Battersby P, Alraies A, Sloan AJ, Moseley R, Waddington RJ. Isolation and characterisation of mesenchymal stem cells from rat bone marrow and the endosteal niche: a comparative study. Stem Cells Int. 2018;2018:6869128.
  65. Caroti CM, Ahn H, Salazar HF, Joseph G, Sankar SB, Willett NJ, et al. A novel technique for accelerated culture of murine mesenchymal stem cells that allows for sustained multipotency. Sci Rep. 2017;7(1):13334. https://doi.org/10.1038/s41598-017-13477-y
  66. Hu Y, Lou B, Wu X, Wu R, Wang H, Gao L, et al. Comparative study on in vitro culture of mouse bone marrow mesenchymal stem cells. Stem Cells Int. 2018;2018:6704583. https://doi.org/10.1155/2018/6704583
  67. Meirelles Lda S, Nardi NB. Murine marrow-derived mesenchymal stem cell: isolation, in vitro expansion, and characterization. Br J Haematol. 2003;123:702-711. https://doi.org/10.1046/j.1365-2141.2003.04669.x
  68. Ikegame Y, Yamashita K, Hayashi S, Mizuno H, Tawada M, You F, et al. Comparison of mesenchymal stem cells from adipose tissue and bone marrow for ischemic stroke therapy. Cytotherapy. 2011;13(6):675-685. https://doi.org/10.3109/14653249.2010.549122
  69. Ridzuan N, Al Abbar A, Yip WK, Maqbool M, Ramasamy R. Characterization and expression of senescence marker in prolonged passages of rat bone marrow-derived mesenchymal stem cells. Stem Cells Int. 2016;2016:8487264.
  70. Karaoz E, Aksoy A, Ayhan S, Sariboyaci AE, Kaymaz F, Kasap M. Characterization of mesenchymal stem cells from rat bone marrow: ultrastructural properties, differentiation potential and immunophenotypic markers. Histochem Cell Biol. 2009;132(5):533-546. https://doi.org/10.1007/s00418-009-0629-6
  71. Webb TL, Quimby JM, Dow SW. In vitro comparison of feline bone marrow-derived and adipose tissue-derived mesenchymal stem cells. J Feline Med Surg. 2012;14(2):165-168. https://doi.org/10.1177/1098612X11429224
  72. Schultz MB, Sinclair DA. When stem cells grow old: phenotypes and mechanisms of stem cell aging. Development. 2016;143(1):3-14. https://doi.org/10.1242/dev.130633
  73. Blasco MA. Telomere length, stem cells and aging. Nat Chem Biol. 2007;3(10):640-649. https://doi.org/10.1038/nchembio.2007.38
  74. Wu J, Niu J, Li X, Wang X, Guo Z, Zhang F. TGF-β1 induces senescence of bone marrow mesenchymal stem cells via increase of mitochondrial ROS production. BMC Dev Biol. 2014;14(1):21. https://doi.org/10.1186/1471-213X-14-21
  75. Zhang K, Huang L, Sun H, Zhu Y, Xiao Y, Huang M, et al. Role of Notch expression in premature senescence of murine bone marrow stromal cells. Prog Nat Sci. 2009;19(5):557-562. https://doi.org/10.1016/j.pnsc.2008.09.005
  76. Petrenko Y, Vackova I, Kekulova K, Chudickova M, Koci Z, Turnovcova K, et al. A comparative analysis of multipotent mesenchymal stromal cells derived from different sources, with a focus on neuroregenerative potential. Sci Rep. 2020;10(1):4290. https://doi.org/10.1038/s41598-020-61167-z
  77. Bearden RN, Huggins SS, Cummings KJ, Smith R, Gregory CA, Saunders WB. In-vitro characterization of canine multipotent stromal cells isolated from synovium, bone marrow, and adipose tissue: a donor-matched comparative study. Stem Cell Res Ther. 2017;8(1):218. https://doi.org/10.1186/s13287-017-0639-6
  78. Russell KA, Chow NH, Dukoff D, Gibson TW, LaMarre J, Betts DH, et al. Characterization and immunomodulatory effects of canine adipose tissue- and bone marrow-derived mesenchymal stromal cells. PLoS One. 2016;11(12):e0167442. https://doi.org/10.1371/journal.pone.0167442
  79. Peister A, Mellad JA, Larson BL, Hall BM, Gibson LF, Prockop DJ. Adult stem cells from bone marrow (MSCs) isolated from different strains of inbred mice vary in surface epitopes, rates of proliferation, and differentiation potential. Blood. 2004;103(5):1662-1668. https://doi.org/10.1182/blood-2003-09-3070
  80. Hu Y, Lou B, Wu X, Wu R, Wang H, Gao L, et al. Immunophenotype and differentiation capacity of bone marrow-derived mesenchymal stem cells from CBA/Ca, ICR and Balb/c mice. World J Stem Cells. 2013;5(1):34-42. https://doi.org/10.4252/wjsc.v5.i1.34
  81. Nadri S, Soleimani M, Hosseni RH, Massumi M, Atashi A, Izadpanah R. An efficient method for isolation of murine bone marrow mesenchymal stem cells. Int J Dev Biol. 2007;51(8):723-729. https://doi.org/10.1387/ijdb.072352ns
  82. Baddoo M, Hill K, Wilkinson R, Gaupp D, Hughes C, Kopen GC, et al. Characterization of mesenchymal stem cells isolated from murine bone marrow by negative selection. J Cell Biochem. 2003;89(6):1235-1249. https://doi.org/10.1002/jcb.10594
  83. Truong NH, Nguyen NH, Le TV, Vu NB, Huynh N, Nguyen TV, et al. Comparison of the treatment efficiency of bone marrow-derived mesenchymal stem cell transplantation via tail and portal veins in CCl4-induced mouse liver fibrosis. Stem Cells Int. 2016;2016:5720413.
  84. Zhang E, Yang Y, Zhang J, Ding G, Chen S, Peng C, et al. Efficacy of bone marrow mesenchymal stem cell transplantation in animal models of pulmonary fibrosis after exposure to bleomycin: A meta-analysis. Exp Ther Med. 2019;17(3):2247-2255.
  85. Shiota Y, Nagai A, Sheikh AM, Mitaki S, Mishima S, Yano S, et al. Transplantation of a bone marrow mesenchymal stem cell line increases neuronal progenitor cell migration in a cerebral ischemia animal model. Sci Rep. 2018;8(1):14951. https://doi.org/10.1038/s41598-018-33030-9
  86. Kim JW, Lee JH, Lyoo YS, Jung DI, Park HM. The effects of topical mesenchymal stem cell transplantation in canine experimental cutaneous wounds. Vet Dermatol. 2013;24(2):242-e53. https://doi.org/10.1111/vde.12011
  87. Rici RE, Alcantara D, Fratini P, Wenceslau CV, Ambrosio CE, Miglino MA, et al. Mesenchymal stem cells with rhBMP-2 inhibits the growth of canine osteosarcoma cells. BMC Vet Res. 2012;8(1):17. https://doi.org/10.1186/1746-6148-8-17
  88. Tang W, Lin D, Yu Y, Niu H, Guo H, Yuan Y, et al. Bioinspired trimodal macro/micro/nano-porous scaffolds loading rhBMP-2 for complete regeneration of critical size bone defect. Acta Biomater. 2016;32:309-323. https://doi.org/10.1016/j.actbio.2015.12.006
  89. Wang Y, Bi X, Zhou H, Deng Y, Sun J, Xiao C, et al. Repair of orbital bone defects in canines using grafts of enriched autologous bone marrow stromal cells. J Transl Med. 2014;12(1):123. https://doi.org/10.1186/1479-5876-12-123
  90. Deng Y, Zhou H, Yan C, Wang Y, Xiao C, Gu P, et al. In vitro osteogenic induction of bone marrow stromal cells with encapsulated gene-modified bone marrow stromal cells and in vivo implantation for orbital bone repair. Tissue Eng Part A. 2014;20(13-14):2019-2029. https://doi.org/10.1089/ten.TEA.2013.0604
  91. Zhu Y, Zhang K, Zhao R, Ye X, Chen X, Xiao Z, et al. Bone regeneration with micro/nano hybrid-structured biphasic calcium phosphate bioceramics at segmental bone defect and the induced immunoregulation of MSCs. Biomaterials. 2017;147:133-144. https://doi.org/10.1016/j.biomaterials.2017.09.018
  92. Yuan J, Cui L, Zhang WJ, Liu W, Cao Y. Repair of canine mandibular bone defects with bone marrow stromal cells and porous β-tricalcium phosphate. Biomaterials. 2007;28(6):1005-1013. https://doi.org/10.1016/j.biomaterials.2006.10.015
  93. Yuan J, Zhang WJ, Liu G, Wei M, Qi ZL, Liu W, et al. Repair of canine mandibular bone defects with bone marrow stromal cells and coral. Tissue Eng Part A. 2010;16(4):1385-1394. https://doi.org/10.1089/ten.tea.2009.0472
  94. Kadiyala S, Jaiswal N, Bruder SP. Culture-expanded, bone marrow-derived mesenchymal stem cells can regenerate a critical-sized segmental bone defect. Tissue Eng. 1997;3(2):173-185. https://doi.org/10.1089/ten.1997.3.173
  95. Bruder SP, Kurth AA, Shea M, Hayes WC, Jaiswal N, Kadiyala S. Bone regeneration by implantation of purified, culture-expanded human mesenchymal stem cells. J Orthop Res. 1998;16(2):155-162. https://doi.org/10.1002/jor.1100160202
  96. Mocchi M, Dotti S, Bue MD, Villa R, Bari E, Perteghella S, et al. Veterinary regenerative medicine for musculoskeletal disorders: can mesenchymal stem/stromal cells and their secretome be the new frontier? Cells. 2020;9(6):1453. https://doi.org/10.3390/cells9061453
  97. Kulus M, Kulus J, Jankowski M, Borowiec B, Jeseta M, Bukowska D, et al. The use of mesenchymal stem cells in veterinary medicine. Med J Cell Biol. 2018;6(3):101-107. https://doi.org/10.2478/acb-2018-0016
  98. Quimby JM, Webb TL, Gibbons DS, Dow SW. Evaluation of intrarenal mesenchymal stem cell injection for treatment of chronic kidney disease in cats: a pilot study. J Feline Med Surg. 2011;13(6):418-426. https://doi.org/10.1016/j.jfms.2011.01.005
  99. Hesse E, Kluge G, Atfi A, Correa D, Haasper C, Berding G, et al. Repair of a segmental long bone defect in human by implantation of a novel multiple disc graft. Bone. 2010;46(5):1457-1463. https://doi.org/10.1016/j.bone.2010.02.011
  100. Grellier M, Granja PL, Fricain JC, Bidarra SJ, Renard M, Bareille R, et al. The effect of the co-immobilization of human osteoprogenitors and endothelial cells within alginate microspheres on mineralization in a bone defect. Biomaterials. 2009;30(19):3271-3278. https://doi.org/10.1016/j.biomaterials.2009.02.033
  101. Horwitz EM, Prockop DJ, Fitzpatrick LA, Koo WW, Gordon PL, Neel M, et al. Transplantability and therapeutic effects of bone marrow-derived mesenchymal cells in children with osteogenesis imperfecta. Nat Med. 1999;5(3):309-313. https://doi.org/10.1038/6529
  102. Woodbury D, Schwarz EJ, Prockop DJ, Black IB. Adult rat and human bone marrow stromal cells differentiate into neurons. J Neurosci Res. 2000;61(4):364-370. https://doi.org/10.1002/1097-4547(20000815)61:4<364::AID-JNR2>3.0.CO;2-C
  103. Tharasanit T, Phutikanit N, Wangdee C, Soontornvipart K, Tantrajak S, Kaewamatawong T, et al. Differentiation potentials of canine bone marrow mesenchymal stem cells. Wetchasan Sattawaphaet. 2011;41:79.
  104. Rodprasert W, Nantavisai S, Pathanachai K, Pavasant P, Osathanon T, Sawangmake C. Tailored generation of insulin producing cells from canine mesenchymal stem cells derived from bone marrow and adipose tissue. Sci Rep. 2021;11(1):12409. https://doi.org/10.1038/s41598-021-91774-3
  105. Ghasemzadeh-Hasankolaei M, Batavani R, Eslaminejad MB, Sayahpour F. Transplantation of autologous bone marrow mesenchymal stem cells into the testes of infertile male rats and new germ cell formation. Int J Stem Cells. 2016;9(2):250-263. https://doi.org/10.15283/ijsc16010
  106. Lotfy A, El-Sherbiny YM, Cuthbert R, Jones E, Badawy A. Comparative study of biological characteristics of mesenchymal stem cells isolated from mouse bone marrow and peripheral blood. Biomed Rep. 2019;11(4):165-170.
  107. Li Y, Chen SK, Li L, Qin L, Wang XL, Lai YX. Bone defect animal models for testing efficacy of bone substitute biomaterials. J Orthop Translat. 2015;3:95-104. https://doi.org/10.1016/j.jot.2015.05.002
  108. Nantavisai S, Egusa H, Osathanon T, Sawangmake C. Mesenchymal stem cell-based bone tissue engineering for veterinary practice. Heliyon (Lond). 2019;5(11):e02808. https://doi.org/10.1016/j.heliyon.2019.e02808
  109. Sawangmake C, Nantavisai S, Osathanon T, Pavasant P. Osteogenic differentiation potential of canine bone marrow-derived mesenchymal stem cells under different β-glycerophosphate concentrations in vitro. Wetchasan Sattawaphaet. 2016;46:617-625.
  110. Kim HJ, Park JS. Usage of human mesenchymal stem cells in cell-based therapy: advantages and disadvantages. Dev Reprod. 2017;21:1-10. https://doi.org/10.12717/DR.2017.21.1.001
  111. Arnhold S, Elashry MI, Klymiuk MC, Wenisch S. Biological macromolecules and mesenchymal stem cells: Basic research for regenerative therapies in veterinary medicine. Int J Biol Macromol. 2019;123:889-899. https://doi.org/10.1016/j.ijbiomac.2018.11.158
  112. Voga M, Adamic N, Vengust M, Majdic G. Stem Cells in Veterinary Medicine-Current State and Treatment Options. Front Vet Sci. 2020;7:278. https://doi.org/10.3389/fvets.2020.00278
  113. Sun Q, Zhang Z, Sun Z. The potential and challenges of using stem cells for cardiovascular repair and regeneration. Genes Dis. 2014;1(1):113-119. https://doi.org/10.1016/j.gendis.2014.07.003