• Title/Summary/Keyword: MRI contrast agent

Search Result 79, Processing Time 0.031 seconds

Quantitative Analysis of GBCA Reaction by Mol Concentration Change on MRI Sequence (MRI sequence에 따른 GBCA 몰농도별 반응에 대한 정량적 분석)

  • Jeong, Hyun Keun;Jeong, Hyun Do;Kim, Ho Chul
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.2
    • /
    • pp.182-192
    • /
    • 2015
  • In this paper, we introduce how to change the reaction rate as mol concentration when we scan enhanced MRI with GBCA(Gadolinium Based Contrast Agent), Also show the changing patterns depending on diverse MRI sequences which are made by different physical principle. For this study, we made MRI phantom ourselves. We mixed 500 mmol Gadoteridol with Saline in each 28 different containers from 500 to 0 mmol. After that, MR phantom was scanned by physically different MRI sequences which are T1 SE, T2 FLAIR, T1 FLAIR, 3D FLASH, T1 3D SPACE and 3D SPCIR in 1.5T bore. The results were as follows : *T1 Spin echo's Total SI(Signal Intensity) was 15608.7, Max peak was 1352.6 in 1 mmol. *T2 FLAIR's Total SI was 9106.4, Max peak was 0.4 1721.6 in 1 mmol. *T1 FLAIR's Total SI was 20972.5, Max peak was 1604.9 in 1 mmol. *3D FLASH's Total SI was 20924.0, Max peak was 1425.7 in 40 mmol. *3D SPACE 1mm's Total SI was 6399.0, Max peak was 528.3 in 3 mmol. *3D SPACE 5mm's Total SI was 6276.5, Max peak was 514.6 in 2 mmol. *3D SPCIR's Total SI was 1778.8, Max peak was 383.8 in 0.4 mmol. In most sequences, High signal intensity was shown in diluted lower concentration rather than high concentration, And also graph's max peak and pattern had difference value according to the each different sequence. Through this paper which have quantitative result of GBCA's reaction rate depending on sequence, We expect that practical enhanced MR protocol can be performed in clinical field.

The effects of labeling gap and susceptibility artifacts in pCASL perfusion MRI (pCASL 관류 영상에서 표지 간격과 자화감수성 인공물이 영상에 미치는 영향)

  • Kim, Seong-Hu
    • Journal of the Korean Society of Radiology
    • /
    • v.9 no.4
    • /
    • pp.213-217
    • /
    • 2015
  • To report problems found in a patient who has implemented stent implantation and then conducted a perfusion MRI using ASL(Arterial Spin Labeling), in order to suggest a solution to them. The perfusion MRI was conducted, using pCASL among ASL methods. Data from pCASL(Pseudo Continuous Arterial Spin Labeling) was acquired together with the structural image simply by changing position(labeling gap 15 mm, 170 mm) of the labeling pulse to avoid stent. Data was processed through the ASLtbx. When perfusion MRI was acquired using pCASL, it showed that the position of the conventional labeling pulse (labeling gap 24 mm) was overlapped with that of stent, which made signal intensity in right brain tissue appear as if it were void. When the labeling pulse was positioned (labeling gap 15 mm) to avoid stent, high signal intensity images were acquired. In labeling pulse (labeling gap 170 mm), the signal intensity was more reduced due to relaxation before labeled blood arrived at the imaging slice. pCASL can be stably repeated measurements because it does not use a contrast agent. And it should be selected with the appropriate image acquisition parameters for the high quality image.

Usefulness of Functional MRI for the study of concentration sheet (Functional MRI를 이용한 학습집중력 향상 시트 개발)

  • Kim, Chang-Gyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.10
    • /
    • pp.2985-2989
    • /
    • 2009
  • An experiment was conducted to examine the effects of ceramic sheet on concentration of students studies. To demonstrate the improvement in the concentration of study, we obtained functional magnetic resonance imaging (fMRI), which has superior time resolution and measures brain noninvasively by using intrinsic contrast agent. As a result of Brainwave measurement, we could verify the blood flow's activate in the nearby frontal lobe related to memory process and noticeable ratio change in absolute alpha wave and beta wave after the analysis of Brainwave measurement. fMRI ascertains the physiological function of the brain and is being used to prevent the trouble medically that can be caused before and after the operation. For the visibility of cranial nerve network, many researches will be carried out to develope the product which is related to brain like concentration of study.

18-FDG EXTERNAL RADIATION DOSE RATES IN DIFFERENT BODY REGIONS OF PET-MRI PATIENTS

  • Han, Eunok;Kim, Ssangtae
    • Journal of Radiation Protection and Research
    • /
    • v.38 no.3
    • /
    • pp.157-165
    • /
    • 2013
  • To determine the factors affecting the external radiation dose rates of patients undergoing PET-MRI examinations and to assess the trends of these differences, we measured the changes in the dose rates of $^{18}F$-FDG during a set period of time for each body region. Consistent with theoretical predictions, the dose rate decreased over time in patients undergoing PET-MRI examinations. Furthermore, immediately after the $^{18}F$-FDG injection, the dose rate in the chest region was the highest, followed by the abdominal region, the head region, and the foot region. The dose rate decreased drastically as time passed, by 2.47-fold, from $339.23{\pm}74.70mSv\;h^{-1}$ ($6.73{\pm}5.79$ min) at the time point immediately after the $^{18}F$-FDG injection to $102.71{\pm}26.17mSv\;h^{-1}$ ($136.11{\pm}25.64$ min) after the examination. In the foot region, there were no significant changes over time, from $32.05{\pm}20.23mSv\;h^{-1}$ ($6.73{\pm}5.79$ min) at the time point immediately after the $^{18}F$-FDG injection, to $23.89{\pm}9.14mSv\;h^{-1}$ ($136.11{\pm}25.64$ min) after the examination. The dose rate is dependent on the individual characteristics of the patient, and differed depending on the body region and time point. However, the dose rates were higher in patients who had a lower body weight, shorter stature, fewer urinations, lower fluid intake, and history of diabetes mellitus. To decrease radiation exposure, it is difficult or impossible to change factors inherent to the patient, such as sex, age, height, body weight, obesity, and history of diabetes mellitus. However, factors which can be changed, such as the $^{18}F$-FDG dose, fasting time, fluid intake, number of urinations, and contrast agent dose can be controlled to minimize the external radiation exposure of the patient.

Evaluation and Prediction of Post-Hepatectomy Liver Failure Using Imaging Techniques: Value of Gadoxetic Acid-Enhanced Magnetic Resonance Imaging

  • Keitaro Sofue;Ryuji Shimada;Eisuke Ueshima;Shohei Komatsu;Takeru Yamaguchi;Shinji Yabe;Yoshiko Ueno;Masatoshi Hori;Takamichi Murakami
    • Korean Journal of Radiology
    • /
    • v.25 no.1
    • /
    • pp.24-32
    • /
    • 2024
  • Despite improvements in operative techniques and perioperative care, post-hepatectomy liver failure (PHLF) remains the most serious cause of morbidity and mortality after surgery, and several risk factors have been identified to predict PHLF. Although volumetric assessment using imaging contributes to surgical simulation by estimating the function of future liver remnants in predicting PHLF, liver function is assumed to be homogeneous throughout the liver. The combination of volumetric and functional analyses may be more useful for an accurate evaluation of liver function and prediction of PHLF than only volumetric analysis. Gadoxetic acid is a hepatocyte-specific magnetic resonance (MR) contrast agent that is taken up by hepatocytes via the OATP1 transporter after intravenous administration. Gadoxetic acid-enhanced MR imaging (MRI) offers information regarding both global and regional functions, leading to a more precise evaluation even in cases with heterogeneous liver function. Various indices, including signal intensity-based methods and MR relaxometry, have been proposed for the estimation of liver function and prediction of PHLF using gadoxetic acid-enhanced MRI. Recent developments in MR techniques, including high-resolution hepatobiliary phase images using deep learning image reconstruction and whole-liver T1 map acquisition, have enabled a more detailed and accurate estimation of liver function in gadoxetic acid-enhanced MRI.

Determination of Correlation Times of New Paramagnetic Gadolinium MR Contrast Agents by EPR and 17O NMR

  • Kim, Hee-Kyung;Lee, Gang-Ho;Kim, Tae-Jeong;Chang, Yong-Min
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.4
    • /
    • pp.849-852
    • /
    • 2009
  • The work describes EPR and 17O NMR measurements followed by theoretical calculation of the rotational correlation time $({\tau}_R)$, the water residence time $({\tau}_m)$, and the longitudinal electronic spin relaxation time $(T_{le})$(T_1e) for two new gadolinium complexes 1 and 2 of the type [$Gd(L)(H_2O)$] (L = tranexamic esters) in order to investigate their efficiency as a paramagnetic contrast agent (PCA). Of three correlation times, τR plays a major and predominant role to the unusually high relaxivity of 1 and 2 as compared with that of clinically approved MR CAs such as [$Gd(DTPA)(H_2O)]2‐ (Magnevist${\circledR}$), [Gd(DTPA-BMA)(H2O)] (Omniscan${\circledR}$), and $[Gd(DOTA)(H_2O)]^-$ (Dotarem${\circledR}$). The presence of bulky tranexamic ester in the ligand seems to be responsible for the conformational rigidity, which in turn causes such great an increase in ${\tau}_R$.

Superparamagnetic Gd- and Mn-substituted Magnetite Fluids Applied as MRI Contrast Agents

  • Kim, Jong-Hee;Lee, Chang-Hyun;Lee, Sang-Kuk
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.6
    • /
    • pp.1305-1308
    • /
    • 2009
  • The experimental particle samples included ($Mn_{0.1}Fe_{0.9}$)O-$Fe_2O_3$ and FeO-($Gd_{0.1}Fe_{0.9}$)$_2O_3$ with $Mn^{2+}\;and\;Gd^{3+}$ substitutions in inverse spinel $Fe_3O_4$. A lecithin surfactant was adsorbed onto the magnetic particles by ultrasonication. The samples prepared showed excellent dispersibility at the mean size of 13 nm; their saturation magnetization values were 63 emu/g for the bare and Mn-substituted magnetites, and 56 emu/g for the Gd-substituted magnetite. The crystal structure of the substituted magnetites was very similar to that of the bare magnetite, due to a small amount of 0.1 mole fraction substituted in synthesizing the magnetite. The magnetite fluids, according to T2-weighted MR images, effectively diminished the signal intensity in the liver and spleen of Sprague-Dawley rats.

One-pot Synthesis of Multifunctional Mn3O4/mesoporous Silica Core/shell Nanoparticles for Biomedical Applications

  • Lee, Dong Jun;Lee, Nohyun;Lee, Ji Eun
    • Applied Chemistry for Engineering
    • /
    • v.33 no.1
    • /
    • pp.113-118
    • /
    • 2022
  • Multifunctional nanomaterials based on mesoporous silica nanoparticles (MSN) and metal oxide nanocrystals are among the most promising materials for theragnosis because of their ease of modification and high biocompatibility. However, the preparation of multifunctional nanoparticles requires time-consuming multistep processes. Herein, we report a simple one-pot synthesis of multifunctional Mn3O4/mesoporous silica core/shell nanoparticles (Mn3O4@mSiO2) involving the temporal separation of core formation and shell growth. This simple procedure greatly reduces the time and effort required to prepare multifunctional nanoparticles. Despite the simplicity of the process, the properties of nanoparticles are not markedly different from those of core/shell nanoparticles synthesized by a previously reported multistep process. The Mn3O4@mSiO2 nanoparticles are biocompatible and have potential for use in optical imaging and magnetic resonance imaging.

Quantitative Analysis of Brain Metabolite Spectrum Depending on the Concentration of the Contrast Media in Phantom (팬텀 내 조영제 농도에 따른 뇌 대사물질 Spectrum의 정량분석)

  • Shin, WoonJae;Gang, EunBo;Chun, SongI
    • Journal of the Korean Society of Radiology
    • /
    • v.9 no.1
    • /
    • pp.47-53
    • /
    • 2015
  • Quantitative analysis of MR spectrum depending on mole concentration of the contrast media in cereberal metabolite phantom was performed. PRESS pulse sequence was used to obtain MR spectrum at 3.0T MRI system (Archieva, Philips Healthcare, Best, Netherland), and the phantom contains brain metabolites such as N-Acetyl Asparatate (NAA), Choline (Cho), Creatine (Cr) and Lactate (Lac). In this study, optimization of MRS PRESS pulse sequency depending on the concentration of contrast media (0, 0.1 and $0.3mmol/{\ell}$) was evaluated for various repetition time(TR; 1500, 1700 and 2000 ms). In control (cotrast-media-free) group, NAA and Cho signals were the highest at TR 2000 ms than at 1700 and 1500 ms. Cr had the highest peak signal at TR 1500 ms. When concentration of contrast media was $0.1mmol/{\ell}$, the metabolites were increased NAA 73%, Cho 249%, Cr 37% at TR 1700 ms compared with other TR, and also signal increased at $0.3mmol/{\ell}$, In $0.5mmol/{\ell}$ of contrast agent, cerebral metabolite peaks reduced, especially when TR 1500 ms and 2000 ms they decreased below those of control group. The ratio of metabolite peaks such as NAA/Cr and Cho/Cr decreased as the concentration of the contrast agent increased from 0.1 to $0.5mmol/{\ell}$. Authors found that the optimization of PRESS sequence for 0.3T MRS was as follows: low density of contrast agent ($0.1mmol/{\ell}$ and $0.3mmol/{\ell}$) made the highest signal intensity, while high density of contrast agent reveals the least reduction of signal intensity at 1700 ms. In conclusion, authors believe that it is helpful to reduce TR for acquiring maximum signal intensity.

Pharmacological Functional Magnetic Resonance Imaging of Cloropidol on Motor Task (운동과제에 대한 클로피도그렐의 약리적 뇌자기공명영상)

  • Chang, Yong-Min
    • Investigative Magnetic Resonance Imaging
    • /
    • v.16 no.2
    • /
    • pp.136-141
    • /
    • 2012
  • Purpose : To investigate the pharmacologic modulation of motor task-dependent physiologic responses by antiplatelet agent, clopidogrel, during hand motor tasks in healthy subjects. Materials and Methods: Ten healthy, right-handed subjects underwent three functional magnetic resonance (fMRI) sessions: one before drug administration, one after high dose drug administration and one after reaching drug steady state. For the motor task fMRI, finger flexion-extension movements were performed. Blood oxygenation level dependent (BOLD) contrast was collected for each subject using a 3.0 T VHi (GE Healthcare, Milwaukee, USA) scanner. $T2^*$-weighted echo planar imaging was used for fMRI acquisition. The fMRI data processing and statistical analyses were carried out using SPM2. Results: Second-level analysis revealed significant increases in the extent of activation in the contralateral motor cortex including primary motor area (M1) after drug administration. The number of activated voxels in motor cortex was 173 without drug administration and the number increased to 1049 for high dose condition and 673 for steady-state condition respectively. However, there was no significant difference in the magnitude of BOLD signal change in terms of peak T value. Conclusion: The current results suggest that cerebral motor activity can be modulated by clopidogrel in healthy subjects and that fMRI is highly senstive to evidence such changes.