DOI QR코드

DOI QR Code

Determination of Correlation Times of New Paramagnetic Gadolinium MR Contrast Agents by EPR and 17O NMR

  • Kim, Hee-Kyung (Department of Medical & Biological Engineering, Kyungpook National University) ;
  • Lee, Gang-Ho (Department of Chemistry, Kyungpook National University) ;
  • Kim, Tae-Jeong (Department of Applied Chemistry, Kyungpook National University) ;
  • Chang, Yong-Min (Department of Medical & Biological Engineering, Kyungpook National University)
  • Published : 2009.04.20

Abstract

The work describes EPR and 17O NMR measurements followed by theoretical calculation of the rotational correlation time $({\tau}_R)$, the water residence time $({\tau}_m)$, and the longitudinal electronic spin relaxation time $(T_{le})$(T_1e) for two new gadolinium complexes 1 and 2 of the type [$Gd(L)(H_2O)$] (L = tranexamic esters) in order to investigate their efficiency as a paramagnetic contrast agent (PCA). Of three correlation times, τR plays a major and predominant role to the unusually high relaxivity of 1 and 2 as compared with that of clinically approved MR CAs such as [$Gd(DTPA)(H_2O)]2‐ (Magnevist${\circledR}$), [Gd(DTPA-BMA)(H2O)] (Omniscan${\circledR}$), and $[Gd(DOTA)(H_2O)]^-$ (Dotarem${\circledR}$). The presence of bulky tranexamic ester in the ligand seems to be responsible for the conformational rigidity, which in turn causes such great an increase in ${\tau}_R$.

Keywords

References

  1. Caravan, P. Chem. Soc. Rev. 2006, 35, 512. https://doi.org/10.1039/b510982p
  2. Vigouroux, C.; Belorizky, E.; Fries, P. H. Eur. Phys. J. D. 1999, 5, 243. https://doi.org/10.1007/s100530050252
  3. Powell, D. H.; Dhubhghaill, O. M. N.; Pubanz, D.; Helm, L.; Lebedev, Y. S.; Schlaepfer, W.; Merbach, A. E. J. Am. Chem. Soc. 1996, 118, 9333. https://doi.org/10.1021/ja961743g
  4. Gonzalez, G.; Powell, D. H.; Tissieres, V.; Merbach, A. E. J. Phys. Chem. 1994, 98, 53. https://doi.org/10.1021/j100052a010
  5. Vigouroux, C.; Bardet, M.; Belorizky, E.; Fries, P. H.; Guillermo, A. Chem. Phys. Lett. 1998, 286, 93. https://doi.org/10.1016/S0009-2614(98)00037-2
  6. Caravan, P.; Ellison, J. J.; McMurry, T. J.; Lauffer, R. B. Chem. Rev. 1999, 99, 2293. https://doi.org/10.1021/cr980440x
  7. Merbach, A. E.; Toth, E. The Chemistry of Contrast Agents in Medical Magnetic Resonance Imaging; John Wiley & Sons, Ltd: Chichester, UK, 2001.
  8. Powell, D. H.; Merbach, A. E.; Gonzalez, G.; Br$\ddot{u}$cher, E.; Micskei, K.; Ottaviani, M. F.; K$\ddot{o}$hler, K.; von Zelewsky, A.; Grinberg, O. Y.; Lebedev, Y. S. Helv. Chim. Acta. 1993, 76, 2129. https://doi.org/10.1002/hlca.19930760524
  9. Powell, D. H.; Ni Dubhghaill, O. M.; Pubanz, D.; Helm, L.; Lebedev, Y. S.; Schlaepfer, W.; Merbach, A. E. J. Am. Chem. Soc. 1996, 118, 9333. https://doi.org/10.1021/ja961743g
  10. Clarkson, R. B.; Smirnov, A. I.; Smirnova, T. I.; Kang, H.; Belford, R. L.; Earle, K.; Freed, J. H. Mol. Phys. 1998, 96, 1325.
  11. Borel, A.; Toth, E.; Helm, L.; Janossy, A.; Merbach, A. E. Phys. Chem. Chem. Phys. 2000, 2, 1311. https://doi.org/10.1039/a909553e
  12. Borel, A.; Helm, L.; Merbach, A. E. Chem. Eur. J. 2001, 7, 600. https://doi.org/10.1002/1521-3765(20010202)7:3<600::AID-CHEM600>3.0.CO;2-H
  13. Borel, A.; Yerly, F.; Helm, L.; Merbach, A. E. J. Am. Chem. Soc. 2002, 124, 2042. https://doi.org/10.1021/ja016919f
  14. Rast, S.; Fries, P. H.; Belorizky, E. J. Chem. Phys. 2000, 113, 8724. https://doi.org/10.1063/1.1289882
  15. Rast, S.; Borel, A.; Helm, L.; Belorizky, E.; Fries, P. H.; Merbach, A. E. J. Am. Chem. Soc. 2001, 123, 2637. https://doi.org/10.1021/ja003707u
  16. Rast, S.; Fries, P. H.; Berlorizky, E. J. Chem. Phys. 1999, 96, 1543.
  17. Dutta, S.; Park, J. A.; Jung, J. C.; Chang, Y. M.; Kim, T. J. Dalton Trans. 2008, 2199.
  18. Dutta, S.; Kim, S. K.; Patel, D. B.; Kim, T. J.; Chang, Y. M. Polyhederon 2007, 26, 3799. https://doi.org/10.1016/j.poly.2007.04.027
  19. Sk, M. N.; Park, J. A.; Chang, Y. M.; Kim, T. J. Bull. Korean Chem. Soc. 2008, 29, 1211. https://doi.org/10.5012/bkcs.2008.29.6.1211
  20. Dutta, S.; Kim, S. K.; Lee, E. J.; Kim, T. J.; Kang, D. S.; Chang, Y. M.; Kang, S. O.; Han, W. S. Bull. Korean Chem. Soc. 2006, 27, 1038. https://doi.org/10.5012/bkcs.2006.27.7.1038
  21. Belorizky, E.; Fries, P. H. Phys. Chem. Chem. Phys. 2004, 6, 2341. https://doi.org/10.1039/b316249d
  22. Micskei, K.; Helm, L.; Br$\ddot(u)$cher, E.; Merbach, A. E. Inorg. Chem. 1993, 32, 3844. https://doi.org/10.1021/ic00070a013
  23. Swift, T. J.; Connick, R. E. J. Chem. Phys. 1962, 37, 307. https://doi.org/10.1063/1.1701321
  24. Toth, E.; Connac, F.; Helm, L.; Adzamli, K.; Merbach, A. E. Eur. J. Inorg. Chem. 1998, 2017.

Cited by

  1. Blood-Pool and Targeting MRI Contrast Agents: From Gd-Chelates to Gd-Nanoparticles vol.2012, pp.12, 2012, https://doi.org/10.1002/ejic.201101137
  2. All-Optical Sensing of a Single-Molecule Electron Spin vol.14, pp.11, 2014, https://doi.org/10.1021/nl502988n
  3. NMR relaxometric properties and cytotoxicity of Gd2O3 nanoparticle suspensions in an organic liquid vol.16, pp.10, 2014, https://doi.org/10.1007/s11051-014-2663-0
  4. Gd-Complexes of 1,4,7,10-Tetraazacyclododecane-N,N′,N′′,N′′′-1,4,7,10-tetraacetic Acid (DOTA) Conjugates of Tranexamates as a New Class of Blood-Pool Magnetic Reson vol.54, pp.1, 2011, https://doi.org/10.1021/jm100966t
  5. Characterization of estrogen‐receptor‐targeted contrast agents in solution, breast cancer cells, and tumors in vivo vol.70, pp.1, 2009, https://doi.org/10.1002/mrm.24442