뇌 MRI 영상의 자동 분류는 뇌종양의 조기 진단을 하는 데 있어 중요한 역할을 한다. 본 연구에서 우리는 심층 특징 앙상블을 사용한 MRI 영상에서의 딥 러닝 기반 뇌종양 분류 모델을 제안한다. 우선 사전 학습된 3개의 합성 곱 신경망을 사용하여 입력 MRI 영상에 대한 심층 특징들을 추출한다. 그 이후 추출된 심층 특징들은 완전 연결 계층들로 구성된 분류 모듈의 입력 값으로 들어간다. 분류 모듈에서는 우선 3개의 서로 다른 심층 특징들 각각에 대해 먼저 완전 연결 계층을 거쳐 특징 차원을 줄인다. 그 이후 3개의 차원이 준 특징들을 결합하여 하나의 특징 벡터를 생성한 뒤 다시 완전 연결 계층의 입력값으로 들어가서 최종적인 분류 결과를 예측한다. 우리가 제안한 모델을 평가하기 위해 웹상에 공개된 뇌 MRI 데이터 셋을 사용하였다. 실험 결과 우리가 제안한 모델이 다른 기계학습 기반 모델보다 더 좋은 성능을 나타냄을 확인하였다.
신경교종의 등급은 생존과 관련된 중요한 정보로 종양 진행을 평가하고 치료 계획을 세우기 위해 치료 전 신경교종의 등급을 분류하는 것이 중요하다. 신경교종 등급의 분류는 주로 고등급 신경교종과 저등급 신경교종으로 나누는 방식을 주로 사용한다. 본 연구에서는 심층신경망 모델을 활용하여 촬영된 MRI 영상을 분석하기 위해 이미지 전처리 기법을 적용하고 심층신경망 모델의 분류 성능을 평가한다. 가장 높은 성능의 EfficientNet-B6 모델은 5-fold 교차 검증에서 정확도 0.9046, 민감도 0.9570, 특이도 0.7976, AUC 0.8702, F1-Score 0.8152의 결과값을 보여준다.
동맥경화증은 경동맥 혈관 벽이 두꺼워지는 질병으로 진단을 위해 혈관 벽의 두께를 모니터링하는 것이 중요하다. 본 연구에서는 경동맥 MRI 영상에서 324개의 라디오믹스 특징을 추출하고 머신러닝 기법을 이용하여 동맥경화증을 진단하는 모델을 제안한다. 라디오믹스 특징을 통해 로지스틱 회귀, 서포트 벡터 머신, 랜덤 포레스트, XGBoost의 총 4가지 분류 모델을 학습하였다. 5-fold 교차 검증에서 가장 높은 성능의 모델인 XGBoost는 정확도 0.9023, 민감도 0.9517, 특이도 0.8035, AUC 0.8776의 결과값을 보여준다.
This paper describes the procedure of implementing an articulatory speech simulator, in order to model the human articulatory organs and to synthesize speech from this model after. Images required to construct the vocal tract model were obtained from MRI, they were then used to construct 2D and 3D vocal tract shapes. In this paper 3D vocal tract shapes were constructed by spatially concatenating and interpolating sectional MRI images. 2D vocal tract shapes were constructed and analyzed automatically into a digital filter model. Following this speech sounds corresponding to the model were then synthesized from the filter. All procedures in this study were using MATLAB.
신경교종(glioma)은 신경교세포에서 발생하는 뇌 종양으로 low grade glioma와 예후가 나쁜 high grade glioma로 분류된다. 자기공명영상(magnetic Resonance Imaging, MRI)은 비침습적 수단으로 이를 이용한 신경교종 진단에 대한 연구가 활발히 진행되고 있다. 또한, 단일 modality의 정보 한계를 극복하기 위해 다중 modality를 조합하여 상호 보완적인 정보를 얻는 연구도 진행되고 있다. 본 논문은 네가지 modality(T1, T1Gd, T2, T2-FLAIR)의 MRI 영상에 입력단 fusion을 적용한 3D CNN 기반의 모델을 제안한다. 학습된 모델은 검증 데이터에 대해 정확도 0.8926, 민감도 0.9688, 특이도 0.6400, AUC 0.9467의 분류 성능을 보였다. 이를 통해 여러 modality 간의 상호관계를 학습하여 신경교종의 등급을 효과적으로 분류함을 확인하였다.
화상평면내 미지호흡운동에 기인한 MRI 아티팩트를 제거하기 위한 후처리방법을 제안한다. 본 연구에서 호흡운동은 2차원의 선형확대축소운동으로 모델화 된다. 신체조직을 비압축성 유체모양의 물질로 가정할때, 화상위에서의 단위체적당 푸로톤 밀도는 일정하다고 가정한다. 사용한 모델에 따르면 호흡운동은 위상 오차와 비균일표본화 및 왜곡된 진폭변조를 MR 데이터에 부여한다. 운동 파라메타가 이미 알려져 있거나 추정 가능하다고 할 때, MRI 아티팩트를 제거하기 위하여 중첩법에 기초를 둔 재구성 알고리즘을 이용한다. 운동 파라매타가 미지인 경우 스팩트럼 이동법을 적용해서 호흡변동함수와 x 방향 확대계수 및 x 방향 확대중심을 추정한다. 다음으로 에너지 최소법을 이용해서 y 방향 확대계수 및 y 방향 확대중심을 추정한다. 시뮬레이션을 통해서 제안한 방법의 유효성을 확인한다.
본 연구에서는 화상평면내 미지 호흡운동에 의한 MRI 아티팩트를 수정하기 위한 개선된 후처리 기법을 제안한다. 호흡운동은 2차원의 선형확대축소 운동으로 모델화 된다 신체조직을 비압축성 유체모양의 물질로 가정할 때 촬상 대상물체에 대한 단위체적당 푸로톤 밀도는 일정하다고 가정한다. 적용한 모델에 의하면 호흡운동은 위상오차와 불균일 표본화 및 진폭변조왜를 MRI 데이터에 부여한다. 운동파라메타가 알려져 있거나 추정가능하다고 할 때 양선형 중첩법에 기초한 재구성 알고리즘이 MRI 아티팩트를 수정하기 위해 사용된다. 운동 파라메타가 미지인 경우 스펙트럼 이동법을 적용해서 호흡변동함수와 x 방향 확대계수 및 x 방향 확대중심을 추정한다. 다음으로 에너지 최소법을 이용해서 y 방향 확대계수 및 y 방향 확대중심을 추정한다. 최종적으로 시뮬레이션된 체동화상을 통해서 제안한 본 방법의 유효성을 확인한다.
본 연구는 교모세포종 (Glioblastoma multiform, GBM)에 대한 방사선 진단학적/치료학적 연구에 필수적으로 필요한 악성뇌종양 동물모델을 개발하기 위해 수행되었다. 악성뇌종양 동물모델 개발을 위해 뇌정위 기구(stereotactic instrument)를 이용하여 C6 세포(Glioblastoma cell line)를 SD rat의 우측 선조체 내에 동종이식하였다. 개발된 동물모델의 검증을 위해 MRI와 해부조직학적 검사방법을 이용하였다. 해부조직학적 검사방법으로는 H&E 염색법을 이용하였다. MRI를 이용한 종양 형성 검사에서 C6 세포 이식 7일 후 종양 형성이 확인되었고, 14일 후에는 이식한 우측 뇌의 대부분이 종양으로 변화한 것을 확인하였다. 해부조직학적 검사에서는 과세포 발현 및 다형성 세포에 의해 형태학적 변화가 발생하는 것을 알 수 있었다. 본 연구에서 개발된 악성뇌종양 동물모델은 in vivo level에서 교모세포종에 대한 방사선 진단학적 기술 개발 및 새로운 치료법 개발을 위한 필수적인 도구로서 활용될 수 있을 것이다.
Brain MRI 검사에서는 영상을 얻기 위해 RF Pulse를 인체에 조사하게 되는데 이때 조사된 RF Pulse 에너지의 상당부분은 우리 몸에 그대로 흡수되게 되고 이로 인해 인체의 온도가 상승하게 되는데 노출 정도에 따라 인체에 영향을 주게 된다. 동일한 RF Pulse 에너지를 주었더라도 인체에 금속이 삽입되었다면 금속으로 인해 인체의 전도도가 상당히 증가하기 때문에 SAR값이 증가하고 체온도 역시 상승할 것이다. 따라서 치아임플란트를 했을 때와 하지 않았을 때 인체의 머리에 나타나는 SAR값의 변화와 인체의 온도변화는 차이가 있지 않을까라는 의문으로 이번 연구를 시작하게 되었다. 실험은 3.0 Tesla MRI장비에서 발생되는 128MHz RF Pulse 주파수대에서 치아임플란트의 사용 유무에 따른 인체가 받는 SAR와 체온의 변화를 XFDTD 프로그램을 사용하여 인체두부 모델과 치아임플란트 모델을 활성화시켜 실험하였다. MRI장비에서 치아임플란트로 인해 인체두부 모델에 흡수되는 SAR의 평균값과 체온 상승을 살펴 본 결과 모두 증가하고 있음을 알 수 있다. 또한 계산 결과 평균 최대 SAR값과 뇌 부분의 최대 온도 상승이 국제 안전 기준치 이하로 나타났으나, 치아임플란트의 개수 증가에 따라 값이 변할 수 있으므로 그 영향을 간과할 수 없으며, 향후 과제로 치아임플란트 개수와 체적의 증가와 치아임플란트 재질에 따른 SAR, 온도 상승 시뮬레이션이 필요하다.
뇌의 전기적 신경활동을 측정하는 뇌전도(EEG)는 저렴하게 취득할 수 있고 높은 시간 해상도를 갖는 반면 공간적 정보를 제공하지는 않는다. 기능적 자기공명영상(fMRI)은 혈류변화를 감지하여 뇌활동을 측정하는 방식으로서 높은 공간 분해능을 갖지만 고가의 비용과 설비를 요구한다. 최근 저렴하게 취득할 수 있는 EEG 데이터로부터 딥러닝을 사용하여 fMRI 합성영상을 생성하는 기술이 제안되었지만, 저주파수 대역에서 EEG와 fMRI 간의 뇌과학적 상관관계를 반영하지는 않는다. 본 연구에서는 휴식상태에서 취득된 EEG 데이터를 스펙트로그램으로 변환한 후 저주파수 특성을 사용하여 fMRI 합성영상을 생성하는 U-net 기반의 크로스 모달리티 변환 모델의 실현가능성을 평가하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.