• Title/Summary/Keyword: MR images

Search Result 778, Processing Time 0.027 seconds

The Utility Evaluation of Reconstructed 3-D Images by Maximum Intensity Projection in Magnetic Resonance Mammography and Cholangiopancreatography

  • Cho, Jae-Hwan;Lee, Hae-Kag;Park, Cheol-Soo;Kim, Ham-Gyum;Baek, Jong-Geun;Kim, Eng-Chan
    • Journal of Magnetics
    • /
    • v.19 no.4
    • /
    • pp.365-371
    • /
    • 2014
  • The aim of this study was to evaluate the utility of 3-D images by comparing and analyzing reconstructed 3-D images from fast spin echo images of MRI cholangiopancreatography (MRCP) images using maximum intensity projection (MIP) with the subtraction images derived from dynamic tests of magnetic resonance mammography. The study targeted 20 patients histologically diagnosed with pancreaticobiliary duct disease and 20 patients showing pancreaticobiliary duct diseases, where dynamic breast MR (magnetic resonance) images, fast spin echo imaged of pancreaticobiliary duct, and 3-D reconstitution images using a 1.5T MR scanner and 3.0T MR scanner were taken. As a result of the study, the signal-to-noise ratio in the subtracted breast image before and after administering the contrast agent and in the reconstructed 3-D breast image showed a high ratio in the reconstructed image of lesional tissue, relevant tissue, and fat tissue. However, no statistically meaningful differences were found in the contrast-to-noise ratio of the two images. In the case of the MRCP image, no differences were found in the ratios of the fast spin echo image and reconstructed 3-D image.

Pattern analysis of lower limb magnetic resonance images in Korean patients with distal myopathy

  • Park, Hyung Jun;Shin, Ha Young;Kim, Seung Min;Park, Kee Duk;Choi, Young-Chul
    • Annals of Clinical Neurophysiology
    • /
    • v.21 no.2
    • /
    • pp.79-86
    • /
    • 2019
  • Background: Magnetic resonance (MR) images are useful for diagnosing myopathy. The purpose of this study was to determine the usefulness of lower-limb MR images in Korean patients with distal myopathy. Methods: We reviewed medical records in the myopathy database from January 2002 to October 2016. We selected 21 patients from 91 unrelated families with distal myopathy: four with GNE myopathy, 11 with dysferlinopathy, and six with ADSSL1 myopathy. Results: Ten (48%) of the 21 patients were men. The ages of the participants at symptom onset and imaging were $19.2{\pm}9.5$ and $30.4{\pm}9.0$ years (mean${\pm}$standard deviation), respectively. Their grade on the modified Gardner-Medwin and Walton grade was $3.3{\pm}1.7$. The strength grade of the knee extensors was not correlated with the Mercuri scale for the quadriceps (r = -0.247, p = 0.115). However, the Medical Research Council grades of the knee flexors, ankle dorsiflexors, and ankle plantar flexors were significantly correlated with the Mercuri scale ratings of the knee flexors (r = -0.497, p = 0.001), tibialis anterior (r = -0.727, p < 0.001), and ankle plantar flexors (r = -0.620, p < 0.001), respectively. T1-weighted MR images showed characteristic fatty replacement patterns that were consistent with the causative genes. Unsupervised hierarchical clustering of the Mercuri scale showed that the main factors contributing to the dichotomy were the causative gene and the clinical severity. Conclusions: This study is the first to reveal the usefulness of lower-limb MR images in the differential diagnosis of distal myopathy in Korea.

Brain MR Multimodal Medical Image Registration Based on Image Segmentation and Symmetric Self-similarity

  • Yang, Zhenzhen;Kuang, Nan;Yang, Yongpeng;Kang, Bin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.3
    • /
    • pp.1167-1187
    • /
    • 2020
  • With the development of medical imaging technology, image registration has been widely used in the field of disease diagnosis. The registration between different modal images of brain magnetic resonance (MR) is particularly important for the diagnosis of brain diseases. However, previous registration methods don't take advantage of the prior knowledge of bilateral brain symmetry. Moreover, the difference in gray scale information of different modal images increases the difficulty of registration. In this paper, a multimodal medical image registration method based on image segmentation and symmetric self-similarity is proposed. This method uses modal independent self-similar information and modal consistency information to register images. More particularly, we propose two novel symmetric self-similarity constraint operators to constrain the segmented medical images and convert each modal medical image into a unified modal for multimodal image registration. The experimental results show that the proposed method can effectively reduce the error rate of brain MR multimodal medical image registration with rotation and translation transformations (average 0.43mm and 0.60mm) respectively, whose accuracy is better compared to state-of-the-art image registration methods.

Convolutional Neural Network-Based Automatic Segmentation of Substantia Nigra on Nigrosome and Neuromelanin Sensitive MR Images

  • Kang, Junghwa;Kim, Hyeonha;Kim, Eunjin;Kim, Eunbi;Lee, Hyebin;Shin, Na-young;Nam, Yoonho
    • Investigative Magnetic Resonance Imaging
    • /
    • v.25 no.3
    • /
    • pp.156-163
    • /
    • 2021
  • Recently, neuromelanin and nigrosome imaging techniques have been developed to evaluate the substantia nigra in Parkinson's disease. Previous studies have shown potential benefits of quantitative analysis of neuromelanin and nigrosome images in the substantia nigra, although visual assessments have been performed to evaluate structures in most studies. In this study, we investigate the potential of using deep learning based automatic region segmentation techniques for quantitative analysis of the substantia nigra. The deep convolutional neural network was trained to automatically segment substantia nigra regions on 3D nigrosome and neuromelanin sensitive MR images obtained from 30 subjects. With a 5-fold cross-validation, the mean calculated dice similarity coefficient between manual and deep learning was 0.70 ± 0.11. Although calculated dice similarity coefficients were relatively low due to empirically drawn margins, selected slices were overlapped for more than two slices of all subjects. Our results demonstrate that deep convolutional neural network-based method could provide reliable localization of substantia nigra regions on neuromelanin and nigrosome sensitive MR images.

Skeletal Sarcomas Examined with MR in Tubular and CT in Flat Bones (골격계 육종에서 관상골MR과 편평골CT의 유용성)

  • Moon, Tae-Yong;Lee, Young-Joon;Jung, Kyung-Hwa;Hur, Jin-Do;Sol, Mi-Young;Kwon, Woon-Jung
    • The Journal of the Korean bone and joint tumor society
    • /
    • v.9 no.2
    • /
    • pp.162-168
    • /
    • 2003
  • Purpose: Primary malignant bone tumors are classified with mesenchymal sarcomas (MS) such as osteosarcoma and chondrosarcoma and small round cell sarcomas (SRS) such as Ewing's sarcoma and lymphoma. Radiological examinations for skeletal sarcoma were using MR scan in tubular bone sarcomas and CT scan in flat bone sarcomas recently. Both MR and CT scans show some findings of bone destruction and soft tissue mass but MR scans don't reveal a finding with mineralization relatively. So we investigated bone destructive pattern of skeletal sarcomas on both MR and CT scans for differentiation of MS and SRS. Materials and Methods: There are 28 MS and 26 SRS examined with MR or CT scans. The findings according to bone destructive pattern were divided to eccentric and concentric in 26 cases of tubular bone sarcomas with MR scan and 28 cases of flat bone sarcomas with CT scan. Results: MR images revealed eccentric destruction in 12 cases of 16 MS and concentric in all cases of 10 SRS (p>.01). CT images showed eccentric destruction in 10 cases of 12 MS and concentric bone destruction in 13 cases of 16 SRS (p>.01) Conclusion: The findings divided to eccentric and concentric bone destructive patterns were useful for differential diagnosis of MS from SRS on both MR and CT scans.

  • PDF

MR Imaging Findings of Recurred Dermatofibrosarcoma Protuberans of the Scalp: A Case Report (두피에서 재발한 융기성 피부섬유육종의 MR영상: 증례 보고)

  • Cho, Joon;Roh, Hong-Gee;Kim, Mi-Young
    • Investigative Magnetic Resonance Imaging
    • /
    • v.10 no.2
    • /
    • pp.121-125
    • /
    • 2006
  • A 48-year-old man presented with a dermatofibrosarcoma protuberans (DFSP) of the scalp associated with local recurrence. Axial T1- and T2-weighted images demonstrated a well-circumscribed hypointense and intermediate hyperintense mass in the skin and subcutaneous layer of the scalp, respectively. Contrast-enhanced T1-weighted images showed the strongly enhanced mass invasion to the skin, subcutaneous layer and adjacent galeal layer. Scalp DFSP is very uncommon but is an aggressive tumor, so MR imaging diagnosis of the extent of the lesion to underlying structures, and initial wide local resection is important to prevent recurrence.

  • PDF

Comparison of In-Phase and Opposed-Phase FMPSPGR Images in Breath-hold T1-weighted MR IMaging of Liver (호흡정지 T1 강조 간 자기공명영상에서 동위상 역위상 FMPSPGR 영상의 비교)

  • 김명진;김만득;정재준;이종태;유형식
    • Investigative Magnetic Resonance Imaging
    • /
    • v.1 no.1
    • /
    • pp.142-147
    • /
    • 1997
  • Purpose: To compare the effectiveness of the in-phase (IP) sequence and the opposed-phase (Op) sequence in the detection of focal hepatic lesions in the single breath-hold hepatic MR imaging with fast gradient T1-weighted pulse sequences. Materials and Methods: IP and OP T1-weighted breath-hold imaging was performed using fast gradient echo sequences in 45 patients referred for known focal hepatic lesions, in which 78 lesions were detected. Three blind readers independently reviewed the images for lesion detectability. The signal-to-noise ratio (SNR) of the liver, the lesion-to-liver contrast-to-noise ratio (CNR) and the liver-to-spleen CNR were also compared. A consensus was reached by three readers to determine which sequence is better in image quality. Results: On OP images, 61(78%), 61(78%), and 63(89%) lesions were correctly identified for reader 1, 2 and 3, respectively. On IP images, 66(85%), 65(83%), and 65(93%) lesions were detected for each reader, respectively. When two image sets were combined, 71(91 %), 69(88 %), and 76(97%) lesions respectively were detected for each reader. In cases of hepatocellular carcinoma, liver-to-Iesion CNR was greater on the OP images(p (0.05), but in other lesions significant difference was not demonstrated. Liver-to-spleen CNR was higher on OP images(p ( 0.1), but the SNR of the liver was higher on the IP images. Conclusion: Use of both IP and OP imaging can be helpful to avoid erroneous missing of some focal hepatic lesions.

  • PDF

Development of MR Compatible Coaxial-slot Antenna for Microwave Hyperthermia (초고주파 가열치료를 위한 MR 호환 동축 슬롯 안테나의 개발)

  • Kim, T.H.;Chun, S.I.;Han, Y.H.;Kim, D.H.;Mun, C.W.
    • Journal of Biomedical Engineering Research
    • /
    • v.30 no.4
    • /
    • pp.333-340
    • /
    • 2009
  • MR compatible coaxial-slot antenna for microwave hyperthermia was developed while its structure and size of each part were determined by computer simulation using finite element method(FEM). Its local heating performance was evaluated using tissue-mimic phantom and swine muscles. 2% agarose gel mixed with 6mM/$\ell$ $MnCl_2$ as a biological tissue-mimic phantom was heated by the proposed antenna driven by a 2.45GHz microwave generator. The temperature changes of the phantom were monitored using multi-channel digital thermometer at the distance of 0mm, 5mm, 10mm and 20mm from the tip center of the antenna. Also muscle tissue of swine was heated for 2 and 5minutes with 50W and 30W of microwave generator powers, respectively, to evaluate the local heating performance of the antenna. MRI compatibility was also verified by acquiring MR images and MR temperature map. MR signals were acquired from the agarose gel phantom using $T2^*$ GRE sequence with 1.5T clinical MRI scanner(Signa Echospeed, GE, Milwaukee, WI, U.S.A.) at Pusan Paik Hospital and were transferred to PC in order to reconstruct MR images and temperature map using proton resonance frequency(PRF) method and laboratory-developed phase unwrapping algorithm. Authors found that it has no severe distortion due to the antenna inserted into the phantom. Finally, we can conclude that the suggested coaxial-slot antenna has an excellent local heating performance for both of tissue-mimic phantom and swine muscle, and it is compatible to 1.5T MRI scanner.

Brain MR Images Grouping By Feature Extraction (뇌 MR 영상의 특징 추출을 이용한 그룹핑)

  • 채정숙;조경은;조형제
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.10b
    • /
    • pp.469-471
    • /
    • 2001
  • 뇌 MR 영상의 분석을 통해 질환을 자동적으로 진단하고 판별을 하기 위한 전처리 단계에서 정상인의 MR 영상 모델과 현재 고려되어지는 대상 영상과의 비교 작업이 요구된다. 이를 통해 보다 정확한 질병에 대한 근거를 제시함으로서 진단이 가능하게 된다. 이러한 비교 작업을 위해 우선적으로 해결해야 하는 것이 현재 대상 영상이 정상인의 MR 영상 시리즈 중 어느 위치의 영상과 일치하는 지를 판별해야 한다. 실질적으로 뇌 MR 시리즈는 영상의 특징에 따라 크게 몇 개의 그룹으로 분류된다. 따라서 본 논문에서는 매핑을 위한 각 구성 요소의 특징을 추출해 자동으로 뇌 영상의 그룹핑을 함으로써 매핑시 고려되어지는 슬라이드의 범위를 좁혀줄 뿐만 아니라 영상의 질에 따라 부분적인 손실이 있다 하더라도 전후 관계 정보를 이용하여 유추가 가능한 방법을 제시한다. 800여개의 T2 MR 강조 영상에 대해서 실험을 행하여 비교적 정확한 그룹핑 결과를 유도할 수 있었음을 확인하였다.

  • PDF

Development of an Automatic 3D Coregistration Technique of Brain PET and MR Images (뇌 PET과 MR 영상의 자동화된 3차원적 합성기법 개발)

  • Lee, Jae-Sung;Kwark, Cheol-Eun;Lee, Dong-Soo;Chung, June-Key;Lee, Myung-Chul;Park, Kwang-Suk
    • The Korean Journal of Nuclear Medicine
    • /
    • v.32 no.5
    • /
    • pp.414-424
    • /
    • 1998
  • Purpose: Cross-modality coregistration of positron emission tomography (PET) and magnetic resonance imaging (MR) could enhance the clinical information. In this study we propose a refined technique to improve the robustness of registration, and to implement more realistic visualization of the coregistered images. Materials and Methods: Using the sinogram of PET emission scan, we extracted the robust head boundary and used boundary-enhanced PET to coregister PET with MR. The pixels having 10% of maximum pixel value were considered as the boundary of sinogram. Boundary pixel values were exchanged with maximum value of sinogram. One hundred eighty boundary points were extracted at intervals of about 2 degree using simple threshold method from each slice of MR images. Best affined transformation between the two point sets was performed using least square fitting which should minimize the sum of Euclidean distance between the point sets. We reduced calculation time using pre-defined distance map. Finally we developed an automatic coregistration program using this boundary detection and surface matching technique. We designed a new weighted normalization technique to display the coregistered PET and MR images simultaneously. Results: Using our newly developed method, robust extraction of head boundary was possible and spatial registration was successfully performed. Mean displacement error was less than 2.0 mm. In visualization of coregistered images using weighted normalization method, structures shown in MR image could be realistically represented. Conclusion: Our refined technique could practically enhance the performance of automated three dimensional coregistration.

  • PDF