• Title/Summary/Keyword: MPM(Matrix Pencil Method)

Search Result 9, Processing Time 0.019 seconds

Matrix Pencil Method using Fourth Order Cumulant (4차 Cumulant를 이용한 Matrix Pencil Method)

  • Jang Woo-Jin;Koh Jin-Hwan
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.43 no.2 s.308
    • /
    • pp.87-92
    • /
    • 2006
  • In array signal processing, high order statistics can be used to estimate parameters from signal of sums of complex exponential. This paper presents a high order Matrix Pencil method(MPM) using the fourth order cumulant. Since the fourth order cumulant can suppress the Gaussian noise, the response of MPM has better noise immunity than the conventional approaches. We successfully formulate the high order MPM with all the benefits of MPM along with higher accuracy. In the numerical simulations we demonstrated that the proposed method with forth order cumulant has better resolution to find degree of arrival(DOA) in the presence of the Gaussian noise.

Matrix Pencil Method Using Fourth-order Statistic (4차 통계량을 이용한 Matrix Pencil Method)

  • Jang Woo-Jin;Wang Yi-Su;Zhou Wei-Wei;Koh Jin-Hwan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.6C
    • /
    • pp.629-636
    • /
    • 2006
  • In array signal processing, high order statistics can be used to estimate parameters from signal of sums of complex exponential. In this paper, we derive two types of direction finding algorithms which use the fourth-order cumulant and moment of the received array data. Since the fourth order cumulant can suppress the Gaussian noise, the response of MPM has better noise immunity than the conventional approaches. The performance of each method in regard to the probability of resolution and SNR in the presence of the Gaussian noise is investigated. As a result, the proposed method applied to the fourth-order statistic can find DOA more correctly in the presence of the Gaussian noise.

DOD/DOA Estimation for Bistatic MIMO Radar Using 2-D Matrix Pencil Method (2차원 Matrix Pencil Method 기반의 바이스태틱 MIMO 레이더 표적 도래각 추정)

  • Lee, Kang-In;Kang, Wonjune;Yang, Hoon-Gee;Chung, Wonzoo;Kim, Jong Mann;Chung, Young-Seek
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.7
    • /
    • pp.782-790
    • /
    • 2014
  • In this paper, we apply the 2-D Matrix Pencil Method(MPM) to the estimation of the direction of arrival(DOA) of multiple signals of interest(SOIs) in bistatic MIMO radar. The 2-D MPM shows remarkable performance under a low SNR environment and low computational complexity to estimate the DOA of multiple SOIs. Also, it is possible to estimate the direction of departure(DOD) which is an angle from transmitter to target. To verify the proposed algorithm, we applied the proposed algorithm to a uniformly spaced linear array(ULA) and compared the RMSE(Root Mean Square Error) of DOA and DOD under the various SNR with those of the 2-D Capon algorithm.

Using The Matrix Pencil Method to Frequency Estimate Algorithm of OFDM System (Matrix Pencil Method를 이용한 OFDM의 주파수 추정)

  • 차정근;강석진;박상백;고진환
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.04d
    • /
    • pp.73-75
    • /
    • 2003
  • OFDM 전송방식에 있어서 중요한 주파수 옵셋 추정을 하는데 있어서 기존의 FFT 방법이 가지고 있는 문제점을 보완하는 알고리즘이 많이 연구되고 있다. FFT의 정수배 옵셋외에 소수배 옵셋이 생겼을때 제대로 추정해 낼 수 없는 점을 보완하는 High resolutional technical 알고리즘을 보면 MVDR, MUSIC, root MUSIC, PISARENCO 등이 있다. 본 논문에서는 이러한 알고리즘 중에 MPM(Matrix Pencil Method)를 이용하여 FFT의 문제점을 보완하고 옵셋 추정을 시뮬레이션 해 보았다.

  • PDF

A Study on the Performance Analysis of Sidelobe Blanker using Matrix Pencil Method (Matrix Pencil Method 기반의 부엽차단기 성능분석 연구)

  • Yeo, Min-Young;Lee, Kang-In;Yang, Hoon-Gee;Park, Gyu-Churl;Chung, Young-Seek
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.8
    • /
    • pp.1242-1249
    • /
    • 2017
  • In this paper, we propose a new algorithm for the performance analysis of the sidelobe blanker (SLB) in radar system, which is based on the matrix pencil method (MPM). In general, the SLB in radar is composed of the main antenna, the auxiliary antenna, and the processing unit. The auxiliary antenna with wide beamwidth receives interference signals such as jamming or clutter signals. The main antenna with high gain receives the target signal in the main beam and the interference signals in the sidelobe. In this paper the Swerling model is used as the target echo signal by considering a probabilistic radar cross section (RCS) of the target. To estimate the SLB performance it needs to calculate the probability of target detection and the probability of blanking the interference by using the signals received from the main and auxiliary antennas. The detection probability and the blanking probability include multiple summations of infinite series with infinite integrations, of which convergence rate is very slow. Increase of summation range to improve the calculation accuracy may lead to an overflow error in computer simulations. In this paper, to resolve the above problems, we used the MPM to calculate a summation of infinite series and improved the calculation accuracy and the convergence rate.

A Super-resolution TDOA estimator using Matrix Pencil Method (Matrix Pencil Method를 이용한 고분해능 TDOA 추정 기법)

  • Ko, Jae Young;Cho, Deuk Jae;Lee, Sang Jeong
    • Journal of Navigation and Port Research
    • /
    • v.36 no.10
    • /
    • pp.833-838
    • /
    • 2012
  • TDOA which is one of the position estimation methods is used on indoor positioning, jammer localization, rescue of life, etc. due to high accuracy and simple structure. This paper proposes the super-resolution TDOA estimator using MPM(Matrix Pencil Method). The proposed estimator has more accuracy and is applicable to narrowband signal compared with the conventional cross-correlation. Furthermore, its complexity is low because obtained data directly is used for construction of matrix unlike the MUSIC(Multiple Signal Classification) which is one of the well-known super-resolution estimator using covariance matrix. To validate the performance of proposed estimator, errors of estimation and computational burden is compared to MUSIC through software simulation.

Matrix Pencil Method를 이용한 고분해능 TDOA 추정 기법

  • Go, Jae-Yeong;Jo, Deuk-Jae;Lee, Sang-Jeong
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2012.06a
    • /
    • pp.59-61
    • /
    • 2012
  • TDOA 기법은 위치추정 기법의 하나로 간단한 구조와 높은 정확도를 가지는 장점으로 인해 실내측위, 군사, 의료 분야 등에 자주 사용된다. 본 논문에서는 MPM(Matrix Pencil Method)를 이용한 고분해능 TDOA 추정 기법을 제안한다. 제안된 기법은 기존의 교차상관을 이용한 TDOA 기법에 비교하여 높은 정확도를 가지며 CW(Continuous Wave)와 같은 협대역 신호에 적용이 가능하다. 또한 잘 알려진 고분해능 기법 중 하나인 MUSIC(Multiple Signal Classification)에서 공분산 행렬을 사용하는 것과 달리 수집된 데이터를 바로 행렬로 만들어 사용하므로 복잡성이 낮은 특징이 있다. 제안된 기법의 성능을 검증하기 위해 소프트웨어 시뮬레이션 통해 SNR에 따른 오차와 연산량 측면에서 MUSIC 기법과 비교하였다.

  • PDF

A Study on Jammer Suppression Algorithm for Non-stationary Jamming Environment (재머의 크기가 변하는 환경에서의 억제 알고리즘 연구)

  • Yoon, Ho-Jun;Lee, Kang-In;Chung, Young-Seek
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.2
    • /
    • pp.239-247
    • /
    • 2018
  • Adaptive Beamforming (ABF) algorithm, which is a typical jammer suppression algorithm, guarantees the performance on the assumption that the jamming characteristics of the TDS (Training Data Sample) are stationary, which are obtained immediately before and after transmitting the pulse signal. Therefore, effective jammer suppression can not be expected when the jamming characteristics are non-stationary. In this paper, we propose a new jammer suppression algorithm, of which power spectrum fluctuates fast. In this case, we assume that the location of the jammer station is fixed during the processing time. By applying the MPM (Matrix Pencil Method) to the jamming signal in TDS, we can estimate jammer parameters such as power and incident angle, of which the power will vary fast in time or range bins after TDS. Though we assume that the jammer station is fixed, the estimated jammer's incident angle has an error due to the noise, which degrades the performance of the jammer suppression as the jammer power increases fast. Therefore, the jammer's incident angle should be re-estimated at each range bin after TDS. By using the re-estimated jammer's incident angle, we can construct new covariance matrix under the non-stationary jamming environment. Then, the optimum weight for the jammer suppression is obtained by inversing matrix estimation method based on the matrix projection with the estimated jammer parameters as variables. To verify the performance of the proposed algorithm, the SINR (signal-to-interference plus noise ratio) loss of the proposed algorithm is compared with that of the conventional ABF algorithm.

Noise identification on active circuits and reduction using MPM technique (능동회로에서의 노이즈 규명 및 MPM기법을 통한 저감)

  • Oh, K.S;Lee, J.B.;Ko, I.K.;Heo, H.
    • Proceedings of the KIEE Conference
    • /
    • 2005.07d
    • /
    • pp.3063-3065
    • /
    • 2005
  • In the raper, the noise involved on the active circuit is identified using correlation function. In order to identify the unknown noise source location, signals from each points on the system are detected and the location is identified by a concept calico Noise Source Surface. The fault diagnosis method is suggested for each element by identifying the noise source in active circuit using SVM. Experiment is conducted to confirm the validity of the proposed method. Also a method to reduce and control the noise in the system signal by using Matrix Pencil Method is introduced.

  • PDF