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Abstract

In array signal processing, high order statistics can be used to estimate parameters from signal of sums of complex
exponential. This paper presents a high order Matrix Pencil method(MPM) using the fourth order cumulant. Since the
fourth order cumulant can suppress the Gaussian noise, the response of MPM has better noise immunity than the
conventional approaches. We successfully formulate the high order MPM with all the benefits of MPM along with higher
accuracy. In the numerical simulations we demonstrated that the proposed method with forth order cumulant has better
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resolution to find degree of arrival(DOA) in the presence of the Gaussian noise.

Keywords | Cumulant, Matrix Pencil Method, DOA estimation, high order statistics

I. introduction

In array signal processing, most high resolution

eigen-structure  algorithms, such as MUSIC,
root-MUSIC ~ and ESPRITY, direction  of
arrival{DOA) estimation of multiple source have been
developed using the second-order statistics of the
received array signals. That is, these methods make

use of input covariance matrix, and assuming that

for

the covariance matrix of the additive sensor noise is
diagonal or can be estimated accuratelym. The Matrix
Pencil method (MPM) can be used when the received
signals of arrays are approximated by sums of
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complex exponentialsmm. This method has a lower
variance of the estimates of the parameters of
interest than a polynomial method, that is, it performs
better than the polynomial method "™ and is also

computationally more efficient ™.
However, in recent years, higher order
cumulant-based methods, such as fourth-order

cumulant, have received increasing interest due to
their advantage over second-order statistics. If the
additive noise sources are spatially colored and
Gaussian, they can be suppressed in the fourth-order
cumulant domain®. In 1991, Y. Hua first applied
higher order statistics, third-order moment, to the
Matrix Pencil methodm, but the performance of these
method was not enough to satisfy. Because, if a
noise, symmetrically

random process, such as
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distributed, then its third cumulant and moment is
equal to =zero, for example, Laplace, Uniform,
Gaussian  distributions are symmetric, but the
third~order cumulants- of input signals ,which are
described as the sums of complex exponentials, are
equal to zero as well On the other hands, the
fourth-order cumulants are not equal to zero under
the above condition. Hence for such a process we
must use the fourth-order cumulant to prevent signal
cancellation. Utilizing this property, one can enhance
the performance of estimation

In this paper, we applied the fourth-order cumulant
to the Matrix Pencil method. By substituting the
original array input data to the fourth order cumulant,
the Gaussian additive noise in the signals can be
suppressed. The average of conventional MPM has
been compared to the proposed method. Simulation
results demonstrate that the fourth order cumulant
method generates better performance in finding DOA
than the conventional MPM.

. Matrix pencil method

The sampled signal x(k) is to be modeled by a
sum of complex exponentials, ie.,

M M
X0 =) Re*™ =) Rz 1)
i=]

i=1

where R = Residues or complex amplitudes,
®; = Angular frequencies,

e =z,
for i = 1,2,---M. and we assumed the damping factor
is not important.

The objective is to find the best estimates of M,
R and z from (k7).
Consider a matrix ¥ (Assume we have N sampled
data) and two sub-matrices Y.» %s.
x(0) x(1) o x(L)

x(l) x(2) . .x(L.+ 1)

Y=

x(N-L-1) x(N-L) - x(N-1) (W-L)(z+1)

ﬁR'_z‘_N-H fRiZiN—L f:RiZiN—l (2)
=1 i=l i=1 N-Ly(L+1)
" x0) 1) - xr-1)
| A0
_x(N—'L—l) x(N.—L) x(N.—Z) (N-L}L ©
C () (2) e x(L)
RN
[ x(N-L) x(N-L+1) x(N'—l) (-t 4)

where L is called the pencil parameter, L is chosen in
between N/3 to N/2 for efficient noise filtering "',

One can write

Y,=2,R,Z, 5)
Y, = ZuROZOZb, : 6)
where,
| 1 1
7 = 2 Z; Zm
e e ]
1 z, . z](H)
7 - 1 z, . ng)
b= .
L1z o Zl(é_l) MXL

Z, = a'iag[zl,zz,-u,zM],R0 = diag[Rl,RZ,n-,RM]

Consider the matrix pencil

,-1Y,=Z2R, [Zo_ﬂl]zb | (7)

Therefore, 4 =2,, for i=12,-M would be the
eigenvalue of the generalized eigenvalue problem,

Y,-AY, 8

a

It can be shown that this is the same as solving
the ordinary eigenvalue problem
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where Y. is the Moore-Penrose Pseudo-inverse of

Y, which is defined by
v =)'y} (10

Once 4=z are known, the frequency component is

computed from
@, = Imagfln(z,)] (11)

Since we do not know how many frequency
components exist in the signal, the number of
estimated frequencies M should be determined using
some criteria. Typically the singular values beyond M
are equal to zero. The way selecting M is as

follows™. Consider the singular value ©. such that

o.c ~ —P
o S0 (12)

where, P is the number of significant decimal digits
in the data.

II. Proposed matrix pencil method using the
fourth—order cumulant

We assume that the received signal of the
respective array is used, which is expressed by (1)
and is time series, thus it can be described as the
following expression

— N Jj@;(t+nr)
xn(r>—;R,-e (13)

where n=0,1,2---, N-1, N denotes the number of
arrays, and 7 is time delay. If the respective input

signals have zero mean, the fourth-order cumulant
can be estimated from the following:

C, = Cum (%, (), %,.,(1), X,.,(6), X,.5 (1))
= E{x, (1), %, (), %,,, (), %,,5 (1)}
— E{x, (1), %, ()} E{x,,, (1), %,., ()}
— E{x, (), %,., (O} E{x,,, (), %,:0}

1
- E{x, (), x, ;O E{x,,, (), %,..(0)} , 14

where "Cum’” is the abbreviation of cumulant, this
expression implies that the fourth-order cumulant
requires knowledge of all moments up to order 4.

To attain the sum of the complex exponentials
related to only time 7, we must exchange

Cum <xn (t), X1 (t)a X2 (t)7 X3 (t)> fOr Cum<x:, (’)’ x: (t)’ X, (t)!

%18 then (14) can be rewritten by

Cy = Cum (3,8, %,(1), %,(8), %, (1)
= E{x, (1), %,(2), %, (), x,,, (D)}
- E{x. (1), x, ()} E{x, (1), x,,, (O}
- E{x,(8),x,(O}E{x, (), X,,,(6)} (15)
- E{x. (), %, (D}E{x. (), x, ()}

One can develop the above expression (15)
Cum {(x,(€),x,(8), %, (1), %,y ()

i '()i '()i '()f jo, (t+(n+1)7)
= E{ R-e—ja), f+nr R.edlm‘ t+nr Re_/ﬂ), +nr Re_]a)‘ t+(n+l)r }

i=1 ' i=1 ' i=1 ! i=1 '

i jo, ( )f je, ) ‘MZ‘ jo, (i )i (t+(n+1)r)
_E{ R_e—ﬂﬂ, t+ntr R.e_’"" t+nt }E{ R.ejw, 1+nr R'eja), t+(n+l)r }

i=1 ' i=t ' i=1 ' i=1 !

f j, )i jo, (1+n7) i jw, ( )M fo,((+{n+1)r)
—E{Y Re7 Y R TNE Re MY R eIy

i=] ' i=1 ' i=1 ' ; '

i joo, )i joo, (1+(n+1)7) i jo, ( )i jo, (t+nr)
_E{ R_e—jw, t+nt R_ejw, 1+(n+1)7 }E{ RAe—jﬂ), i+nr R.elw’ t4+nr, }

i=1 ' i=1 ' i=l ' i=1 '

(16)

The right term remains to only the following

expression.
Co(2) = Cum {x, (1), %, (1), %,(1),%,.,(0)) == )_R'e™" a7

It tumns out that the fourth-order cumulant hasthe
sum of the complex exponentials, which is related to
r, such as (1).

Accordingly, we can write the fourth-order
cumulant matrix C in the following.

%@ ox@ - x0

c=cum{ KO mOmo| 10 B0 O

Xy o) X, @ 0 x,@)

C4 (0) C4 (1) e C4 (L)

G G2 G(L+])

C,(N=L-1) C,(N=L) - C,(N-1)

(18)
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Thus, we can now apply this matrix to the Matrix
Pencil method .
The sampled signal C:(A)is to be modeled by a

sum of complex exponentials, ie.,

M

M
Cik)=-2 Rl =3 Rlz}
H=-2, 2 19
where R’ = Residues or complex amplitudes,

o, = Angular frequencies,

for i = 1,2,-- M. and we assumed the damping factor
1S not important.

The objective is to find the best estimates of M,
R and z fromCi(k),

Consider a matrix C (Assume we have N sampled
data) and two sub-matrices C.» G,

C4 (0) C4 (1) e C4 (L)
ool GO C.(2) C,(L+D)

C,(N-L-1) C,(N-L) CN =Dy iy

[ _ﬁ’jR;‘ f:R;’z, f;R;‘z,‘ ]
D ETD o SRR Wt
%sziNAL‘l iRi“ziNiL fR;‘ZI‘N—l (20)
i=1 =1 i=1 A(N-L)x(L+1)
(ALY C,m C(L-D
Ca _ C4:(1) C4:(2) C4:(L)
GWN-L-1) CN-1) - CW-2),.,, @D
AW o o G
(A 0)) ) C(L+])
Cb = : : :
CW-I) C(N-L) ~ CWN-D),,, @
One can write
C,=Z,R 2, (23)
Gy =Z.RZ,Z, (24)

where R, =diag[Rf,R;,--~,R:4]'

Consider the matrix pencil
C,-4C,=Z,R,[Z,- 4 .1]|Z, : (25)

Therefore, % =2, for i=12M would be the
eigenvalue of the generalized eigenvalue problem,

C, -4 C, (26)

It can be shown that this is the same as solving
the ordinary eigenvalue problem,

c:c,— Al 27
where C. is the Moore-Penrose Pseudo-inverse of
C. which is define by

C, =(c/cy'c (28)

Once 4 =2 are known, the frequency component

1s computed from

o, = Imag[In(z,)] (29)

IV. Numerical Simulations

For the First example, consider a signal of unit
B=nl5, ie,

i=0,1,2,..,99, j=0,12,..10  where

i

amplitude arriving from

u=e"M LN, ;

denote the noise with Gaussian distributions and A8

18 %dcow’ d is distance between arrays, 6 is the
DOA, 4 is the wave length of signals. Fig. 1 shows
that as the SNR.increase the error in the estimation
of the fourth-order cumulant decreases much more
than that of the conventional MPM. The pencil
parameter, L, was equal to 5 with N=10 and the size
of the pencil matrix was 5 by 5.

For the second example, consider a signal of unit
amplitude arriving from A =7/3 and B =7/3+5,,
ie, u=e/aeMILN, 5i=0,12,..,99, §0,1,2,...60

The frequency error in the estimation was defined as
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||ﬁ'_ﬂesr
of A and A and A=[BA.) . Fig. 2 and Fig. 3 show

B~ B, where Bu is estimated frequency

the Monte Carlo simulation of the angle, 8., versus
the error in the estimation. In Fig. 2, the pencil
parameter, L, was equal to 10 and 30, and the size of
pencil matrix was 10 by 10 and 30 by 30. In Fig. 3,
the pencil parameter, N, was equal to 10 and 50.
The of the MPM using
fourth—order cumulant was proved in comparison
with conventional MPM.

For the third example, consider a signal of unit

error  performance

amplitude arriving from A =7/2and a jammer

(198)
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arriving at B =7/2+p; with amplitude “mes, ie.,

u=e"M0y g I LN, 11=0,1,2,..,99, j=0,1,2,..,50

Fig4 is to find jammer strength that is going to
produce an output error of 1% in the estimation of
the signal strength. We can observe that the
fourth-order cumulant gives higher resolution than
the MPM.

V. Conclusion

In this paper, the performance of the proposed
Matrix Pencil method using the fourth—order
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cumulant and the conventional Matrix Pencil method
for DOA estimation was compared. Simulation results
show the proposed method has better performance
than the conventional MPM in terms of SNR, as well
as resolution. We can observe that the fourth-order
cumulant can successfully suppress the Gaussian

noise, however, since fourth-order cumulant is

higher order, the computational load of the proposed
method is more increased than MPM.
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