• Title/Summary/Keyword: MODIS EVI

Search Result 28, Processing Time 0.022 seconds

Predicting Future Terrestrial Vegetation Productivity Using PLS Regression (PLS 회귀분석을 이용한 미래 육상 식생의 생산성 예측)

  • CHOI, Chul-Hyun;PARK, Kyung-Hun;JUNG, Sung-Gwan
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.20 no.1
    • /
    • pp.42-55
    • /
    • 2017
  • Since the phases and patterns of the climate adaptability of vegetation can greatly differ from region to region, an intensive pixel scale approach is required. In this study, Partial Least Squares (PLS) regression on satellite image-based vegetation index is conducted for to assess the effect of climate factors on vegetation productivity and to predict future productivity of forests vegetation in South Korea. The results indicate that the mean temperature of wettest quarter (Bio8), mean temperature of driest quarter (Bio9), and precipitation of driest month (Bio14) showed higher influence on vegetation productivity. The predicted 2050 EVI in future climate change scenario have declined on average, especially in high elevation zone. The results of this study can be used in productivity monitoring of climate-sensitive vegetation and estimation of changes in forest carbon storage under climate change.

Rice Yield Estimation Using Sentinel-2 Satellite Imagery, Rainfall and Soil Data (Sentinel-2 위성영상과 강우 및 토양자료를 활용한 벼 수량 추정)

  • KIM, Kyoung-Seop;CHOUNG, Yun-Jae;JUN, Byong-Woon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.25 no.1
    • /
    • pp.133-149
    • /
    • 2022
  • Existing domestic studies on estimating rice yield were mainly implemented at the level of cities and counties in the entire nation using MODIS satellite images with low spatial resolution. Unlike previous studies, this study tried to estimate rice yield at the level of eup-myon-dong in Gimje-si, Jeollabuk-do using Sentinel-2 satellite images with medium spatial resolution, rainfall and soil data, and then to evaluate its accuracy. Five vegetation indices such as NDVI, LAI, EVI2, MCARI1 and MCARI2 derived from Sentinel-2 images of August 1, 2018 for Gimje-si, Jeollabuk-do, rainfall and paddy soil-type data were aggregated by the level of eup-myon-dong and then rice yield was estimated with gamma generalized linear model, an expanded variant of multi-variate regression analysis to solve the non-normality problem of dependent variable. In the rice yield model finally developed, EVI2, rainfall days in September, and saline soils ratio were used as significant independent variables. The coefficient of determination representing the model fit was 0.68 and the RMSE for showing the model accuracy was 62.29kg/10a. This model estimated the total rice production in Gimje-si in 2018 to be 96,914.6M/T, which was very close to 94,470.3M/T the actual amount specified in the Statistical Yearbook with an error of 0.46%. Also, the rice production per unit area of Gimje-si was amounted to 552kg/10a, which was almost consistent with 550kg/10a of the statistical data. This result is similar to that of the previous studies and it demonstrated that the rice yield can be estimated using Sentinel-2 satellite images at the level of cities and counties or smaller districts in Korea.

Regional Drought Characteristics and Trends using the Evaporative Stress Index (ESI) in South Korea (Evaporative Stress Index (ESI)를 활용한 국내 지역별 가뭄 특성 및 경향 분석)

  • Yoon, Dong-Hyun;Nam, Won-Ho;Lee, Hee-Jin;Kim, Dae-Eui;Svoboda, Mark D.
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.365-365
    • /
    • 2019
  • 가뭄은 전 세계적으로 농업을 비롯한 사회, 경제적으로 큰 피해를 주는 자연 재해이며, 향후 피해 저감을 위해 가뭄의 경향을 파악하고 지역별 가뭄 특성을 파악할 필요가 있다. 위성영상을 활용한 가뭄 판단은 광역적 범위를 대상으로 다양한 밴드를 활용한 데이터를 주기적이고 일정한 수준으로 취득 가능하다는 장점이 있다. 농업 가뭄 분야의 위성영상 활용은 미계측 지역에 대한 정확한 데이터 취득이 어려운 지점데이터의 단점을 보완할 수 있다. 위성영상을 활용한 가뭄 지수로는 Leaf Area Index (LAI), Vegetation Health Index (VHI), Enhanced Vegetation Index (EVI) 등 다양한 지수들이 있으며, 본 연구에서는 단기 가뭄 판단에 활용되고 있는 Evaporative Stress Index (ESI)를 활용하였다. 국내 행정구역 기반의 가뭄 판단을 위해 Moderate Resolution Imaging Spectramadiometer (MODIS)위성의 MOD16A2 영상을 사용하였다. MOD16A2는 land surface temperature (LST)과 LAI의 계산을 통한 실제 증발산량과 FAO-56 Penman-Monteith 공식을 사용한 잠재증발산량을 포함한 다양한 데이터를 8일 주기의 500m 해상도로 제공하고 있다. 2001년부터 2018년까지 500m 해상도의 ESI를 산정하였으며, 국내의 과거 가뭄 경향 분석과 지역별 특성 파악을 위한 표준화를 수행하였다. 그 결과 과거 극심한 가뭄이 있었던 해 (2000-2001년, 2015-2017년 등)에 대한 농업 가뭄 경향 분석이 가능하였으며, 지역별 특성을 파악한 결과 상습가뭄 지역에서 가뭄 경향을 확인하였다. 농업 가뭄 분야에서 ESI의 활용은 가뭄 조기 경보 시스템 개발 및 위성영상 기반 가뭄 모니터링 기술 개발 등에 활용 가능할 것으로 기대된다.

  • PDF

Predicting Forest Gross Primary Production Using Machine Learning Algorithms (머신러닝 기법의 산림 총일차생산성 예측 모델 비교)

  • Lee, Bora;Jang, Keunchang;Kim, Eunsook;Kang, Minseok;Chun, Jung-Hwa;Lim, Jong-Hwan
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.21 no.1
    • /
    • pp.29-41
    • /
    • 2019
  • Terrestrial Gross Primary Production (GPP) is the largest global carbon flux, and forest ecosystems are important because of the ability to store much more significant amounts of carbon than other terrestrial ecosystems. There have been several attempts to estimate GPP using mechanism-based models. However, mechanism-based models including biological, chemical, and physical processes are limited due to a lack of flexibility in predicting non-stationary ecological processes, which are caused by a local and global change. Instead mechanism-free methods are strongly recommended to estimate nonlinear dynamics that occur in nature like GPP. Therefore, we used the mechanism-free machine learning techniques to estimate the daily GPP. In this study, support vector machine (SVM), random forest (RF) and artificial neural network (ANN) were used and compared with the traditional multiple linear regression model (LM). MODIS products and meteorological parameters from eddy covariance data were employed to train the machine learning and LM models from 2006 to 2013. GPP prediction models were compared with daily GPP from eddy covariance measurement in a deciduous forest in South Korea in 2014 and 2015. Statistical analysis including correlation coefficient (R), root mean square error (RMSE) and mean squared error (MSE) were used to evaluate the performance of models. In general, the models from machine-learning algorithms (R = 0.85 - 0.93, MSE = 1.00 - 2.05, p < 0.001) showed better performance than linear regression model (R = 0.82 - 0.92, MSE = 1.24 - 2.45, p < 0.001). These results provide insight into high predictability and the possibility of expansion through the use of the mechanism-free machine-learning models and remote sensing for predicting non-stationary ecological processes such as seasonal GPP.

Application of Evaporative Stress Index (ESI) for Satellite-based Agricultural Drought Monitoring in South Korea (위성영상기반 농업가뭄 모니터링을 위한 Evaporative Stress Index (ESI)의 적용성 평가)

  • Yoon, Dong-Hyun;Nam, Won-Ho;Lee, Hee-Jin;Hong, Eun-Mi;Kim, Taegon;Kim, Dae-Eui;Shin, An-Kook;Svoboda, Mark D.
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.60 no.6
    • /
    • pp.121-131
    • /
    • 2018
  • Climate change has caused changes in environmental factors that have a direct impact on agriculture such as temperature and precipitation. The meteorological disaster that has the greatest impact on agriculture is drought, and its forecasts are closely related to agricultural production and water supply. In the case of terrestrial data, the accuracy of the spatial map obtained by interpolating the each point data is lowered because it is based on the point observation. Therefore, acquisition of various meteorological data through satellite imagery can complement this terrestrial based drought monitoring. In this study, Evaporative Stress Index (ESI) was used as satellite data for drought determination. The ESI was developed by NASA and USDA, and is calculated through thermal observations of GOES satellites, MODIS, Landsat 5, 7 and 8. We will identify the difference between ESI and other satellite-based drought assessment indices (Vegetation Health Index, VHI, Leaf Area Index, LAI, Enhanced Vegetation Index, EVI), and use it to analyze the drought in South Korea, and examines the applicability of ESI as a new indicator of agricultural drought monitoring.

Analyzing Relationship between Satellite-Based Plant Phenology and Temperature (위성영상을 기반으로 도출된 식물계절과 기온요인과의 상관관계 분석)

  • CHOI, Chul-Hyun;JUNG, Sung-Gwan;PARK, Kyung-Hun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.19 no.1
    • /
    • pp.30-42
    • /
    • 2016
  • Climate change are known to have had enormous impacts on plant phenology and thus to have damage on other species which are interacted within ecosystem. In Korea, however, it is difficult to analyze the relationship between climate and phenology due to the limitation of measurement data of plant phenological records. In this study, to be effective analysis of SOG(start of growing season), we used phenological transition dates by using satellite data. Then, we identified the most influential variable in variation of SOG throughout the relationship between SOG and temperature factors. As a result, there is a strong correlation between the SOG and April temperature, TSOGmin($3^{\circ}C$, 12days). This study is expected to be used for predicting plant phenological change using climate change scenario data.

Satellite-Measured Vegetation Phenology and Atmospheric Aerosol Time Series in the Korean Peninsula (위성기반의 한반도 식물계절학적 패턴과 대기 에어로졸의 시계열 특성 분석)

  • Park, Sunyurp
    • Journal of the Korean Geographical Society
    • /
    • v.48 no.4
    • /
    • pp.497-508
    • /
    • 2013
  • The objective of this study is to determine the spatiotemporal influences of climatic factors and atmospheric aerosol on phenological cycles of the Korea Peninsular on a regional scale. High temporal-resolution satellite data can overcome limitations of ground-based phenological studies with reasonable spatial resolution. Study results showed that phenological characteristics were similar among evergreen forest, deciduous forest, and grassland, while the inter-annual vegetation index amplitude of mixed forest was differentiated from the other forest types. Forest types with high VI amplitude reached their maximum VI values earlier, but this relationship was not observed within the same forest type. The phase of VI, or the peak time of greenness, was significantly influenced by air temperature. Aerosol optical thickness (AOT) time-series showed strong seasonal and inter-annual variations. Generally, aerosol concentrations were peaked during late spring and early summer. However, inter-annual AOT variations did not have significant relationships with those of VIs. Weak relationships between AOT amplitude and EVI amplitude only indicates that there would be potential impacts of aerosols on vegetation growth in the long run.

  • PDF

Assessing the Effects of Climate Change on the Geographic Distribution of Pinus densiflora in Korea using Ecological Niche Model (소나무의 지리적 분포 및 생태적 지위 모형을 이용한 기후변화 영향 예측)

  • Chun, Jung Hwa;Lee, Chang-Bae
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.15 no.4
    • /
    • pp.219-233
    • /
    • 2013
  • We employed the ecological niche modeling framework using GARP (Genetic Algorithm for Ruleset Production) to model the current and future geographic distribution of Pinus densiflora based on environmental predictor variable datasets such as climate data including the RCP 8.5 emission climate change scenario, geographic and topographic characteristics, soil and geological properties, and MODIS enhanced vegetation index (EVI) at 4 $km^2$ resolution. National Forest Inventory (NFI) derived occurrence and abundance records from about 4,000 survey sites across the whole country were used for response variables. The current and future potential geographic distribution of Pinus densiflora, one of the tree species dominating the present Korean forest was modeled and mapped. Future models under RCP 8.5 scenarios for Pinus densiflora suggest large areas predicted under current climate conditions may be contracted by 2090 showing range shifts northward and to higher altitudes. Area Under Curve (AUC) values of the modeled result was 0.67. Overall, the results of this study were successful in showing the current distribution of major tree species and projecting their future changes. However, there are still many possible limitations and uncertainties arising from the select of the presence-absence data and the environmental predictor variables for model input. Nevertheless, ecological niche modeling can be a useful tool for exploring and mapping the potential response of the tree species to climate change. The final models in this study may be used to identify potential distribution of the tree species based on the future climate scenarios, which can help forest managers to decide where to allocate effort in the management of forest ecosystem under climate change in Korea.