DOI QR코드

DOI QR Code

Predicting Future Terrestrial Vegetation Productivity Using PLS Regression

PLS 회귀분석을 이용한 미래 육상 식생의 생산성 예측

  • CHOI, Chul-Hyun (Division of Ecological Conservation, National Institute of Ecology) ;
  • PARK, Kyung-Hun (Department of Environmental Engineering, Changwon National University) ;
  • JUNG, Sung-Gwan (Department of Landscape Architecture, Kyungpook National University)
  • 최철현 (국립생태원 생태보전연구실) ;
  • 박경훈 (창원대학교 환경공학과) ;
  • 정성관 (경북대학교 조경학과)
  • Received : 2016.12.16
  • Accepted : 2017.02.06
  • Published : 2017.03.31

Abstract

Since the phases and patterns of the climate adaptability of vegetation can greatly differ from region to region, an intensive pixel scale approach is required. In this study, Partial Least Squares (PLS) regression on satellite image-based vegetation index is conducted for to assess the effect of climate factors on vegetation productivity and to predict future productivity of forests vegetation in South Korea. The results indicate that the mean temperature of wettest quarter (Bio8), mean temperature of driest quarter (Bio9), and precipitation of driest month (Bio14) showed higher influence on vegetation productivity. The predicted 2050 EVI in future climate change scenario have declined on average, especially in high elevation zone. The results of this study can be used in productivity monitoring of climate-sensitive vegetation and estimation of changes in forest carbon storage under climate change.

식생의 기후 적응력은 지역에 따른 상황 및 공간적 패턴이 다르게 나타나기 때문에 픽셀 스케일의 접근이 필요하다. 본 연구에서는 위성영상 기반 식생지수에 대해 PLS 회귀분석을 적용하여 식생의 생산성에 영향을 미치는 기후요인을 평가하고 남한지역의 미래 산림 생산성을 예측하였다. 그 결과, 최고강수분기의 평균기온(Bio8), 최저강수분기의 평균기온(Bio9), 최저강수월의 강수량(Bio14) 변수가 식생의 생산성에 높은 영향을 미치는 것으로 분석되었다. 미래 기후시나리오 자료를 이용하여 예측된 2050년의 식생 생산성은 전체적으로 감소하는 것으로 나타났으며, 특히 고지대에서 크게 감소하는 것으로 분석되었다. 이러한 결과는 기후에 민감한 지역의 식생에 대한 생산성 모니터링과 미래 기후변화로 인한 산림 탄소 저장량의 변화를 평가하는데 있어 유용하게 활용될 수 있을 것으로 판단된다.

Keywords

References

  1. Austin, M.P., A.O. Nicholls, and C.R. Margules. 1990. Measurement of the realized qualitative niche: environmental niches of five Eucalyptus species. Ecological monographs 60(2):161-177. https://doi.org/10.2307/1943043
  2. Barker, T., O. Davidson, W. Davidson, S. Huq, D. Karoly, V. Kattsov, j. Liu, U. Lohmann, M. Manning, and T. Matsuno. 2007. Climate change 2007: Synthesis report. Valencia, IPPC. p.30.
  3. Bivand, R., D. Yu, T. Nakaya, M.-A. Garcia-Lopez, and M.R. Bivand. 2015. Package 'spgwr'. R package.
  4. Bowman, D.M., G.J. Williamson, R.J. Keenan, and Prior, L. D. 2014. A warmer world will reduce tree growth in evergreen broadleaf forests: evidence from Australian temperate and subtropical eucalypt forests. Global ecology and biogeography 23(8): 925-934. https://doi.org/10.1111/geb.12171
  5. Bryant, J.P., F.S. Chapin III, and D.R. Klein. 1983. Carbon/nutrient balance of boreal plants in relation to vertebrate herbivory. Oikos 1983: 357-368.
  6. Chang, M. 2012. Forest hydrology: an introduction to water and forests, Third Edition. CRC press. p.403.
  7. Choi, C.H. and S.G. Jung. 2014. Analysis of the MODIS-based vegetation phenology using the HANTS algorithm. Journal of the Korean Association of Geographic Information Studies 17(3):20-38 (최철현, 정성관. 2014. HANTS 알고리즘을 이용한 MODIS 영상기반의 식물계절 분석. 한국지리정보학회지 17(3):20-38). https://doi.org/10.11108/kagis.2014.17.3.020
  8. Choi, C.H., S.G. Jung, and K.H. Park. 2016. Analyzing relationship between satellite-based plant phenology and temperature. Journal of the Korean Association of Geographic Information Studies 19(1):30-42 (최철현, 정성관, 박경훈. 2016. 위성영상을 기반으로 도출된 식물계절과 기온요인과의 상관관계 분석. 한국 지리정보학회지 19(1):30-42). https://doi.org/10.11108/kagis.2016.19.1.030
  9. Cramer, R.D., J.D. Bunce, D.E. Patterson, and I.E. Frank. 1988. Crossvalidation, bootstrapping, and partial least squares compared with multiple regression in conventional qsar studies. Quantitative Structure-Activity Relationships 7(1):18 -25. https://doi.org/10.1002/qsar.19880070105
  10. D'arrigo, R., C. Malmstrom, G. Jacoby, S. Los, and D. Bunker. 2000. Correlation between maximum latewood density of annual tree rings and ndvi based estimates of forest productivity. International Journal of Remote Sensing 21(11):2329-2336. https://doi.org/10.1080/01431160050029611
  11. DeGaetano, A.T. and B.N. Belcher. 2007. Spatial interpolation of daily maximum and minimum air temperature based on meteorological model analyses and independent observations. Journal of Applied Meteorology and Climatology 46(11): 1981-1992. https://doi.org/10.1175/2007JAMC1536.1
  12. Fotheringham, A.S., C. Brunsdon, and M. Charlton. 2003. Geographically weighted regression: The analysis of spatially varying relationships. John Wiley & Sons. p.212.
  13. Ha, R., H.J. Shin, S.J. Kim. 2007. Proposal of prediction technique for future vegetation information by climate change using satellite image. Journal of the Korean Association of Geographic Information Studies 10(3):58-69 (하림, 신형진, 김성준. 2007. 위성영상을 이용한 기후변화에 따른 미래 식생정보 예측 기법 제안. 한국지리정보학회지 10(3):58-69).
  14. He, J. and X. Shao. 2006. Relationships between tree-ring width index and ndvi of grassland in delingha. Chinese Science Bulletin 51(9):1106-1114. https://doi.org/10.1007/s11434-006-1106-4
  15. Henttonen, H. 1984. The dependence of annual ring indices on some climatic factors. Acta Forestalia Fennica 186: 1-38.
  16. Hijmans, R.J., J. van Etten, J. Cheng, M. Mattiuzzi, M. Sumner, J.A. Greenberg, O.P. Lamigueiro, A. Bevan, E.B. Racine, and A. Shortridge. 2015. Package 'raster'. R package.
  17. Hijmans, R.J., S. Phillips, J. Leathwick, J. Elith, and M.R.J. Hijmans. 2016. Package 'dismo'. R package.
  18. Kalela-Brundin, M. 1999. Climatic information from tree-rings of pinus sylvestris l. And a reconstruction of summer temperatures back to ad 1500 in femundsmarka, eastern norway, using partial least squares regression(PLS) analysis. The Holocene 9(1):59-77. https://doi.org/10.1191/095968399678118795
  19. Le Cao, K.-A., I. Gonzalez, S. Dejean, F. Rohart, B. Gautier, P. Monget, J. Coquery, F. Yao and B. Liquet. 2015. Package 'mixomics'. R package.
  20. Lopatin, E., T. Kolstrom, and H. Spiecker. 2006. Determination of forest growth trends in komi republic (northwestern russia): Combination of tree-ring analysis and remote sensing data. Boreal Environment Research 11(5):341.
  21. Luedeling, E. and A. Gassner. 2012. Partial least squares regression for analyzing walnut phenology in california. Agricultural and Forest Meteorology 158:43-52.
  22. McDowell, N., W.T. Pockman, C.D. Allen, D.D. Breshears, N. Cobb, T. Kolb, J. Plaut, J. Sperry, A. West, and D.G. Williams. 2008. Mechanisms of plant survival and mortality during drought: Why do some plants survive while others succumb to drought?. New phytologist 178(4):719-739. https://doi.org/10.1111/j.1469-8137.2008.02436.x
  23. Melillo, J.M., A.D. McGuire, D.W. Kicklighter, B. Moore, C.J. Vorosmarty, and A.L. Schloss. 1993. Global climate change and terrestrial net primary production. Nature 363(6426):234-240. https://doi.org/10.1038/363234a0
  24. Miao, L., P. Ye, B. He, L. Chen, and X. Cui. 2015. Future climate impact on the desertification in the dry land asia using AVHRR GIMMS NDVI3g data. Remote Sensing 7(4):3863-3877. https://doi.org/10.3390/rs70403863
  25. O'Donnell, M.S., and D. A. Ignizio. 2012. Bioclimatic predictors for supporting ecological applications in the conterminous United States. U.S. Geological Survey Data Series 691:10.
  26. Rouse, J.W., R.H. Haas, J.A. Schell, and D.W. Deering. 1973. Monitoring vegetation systems in the Great Plains with ERTS. Proceedings of the 3rd ERTS Symposium 1:48-62.
  27. Smillie, R.M., S.E. Hetherington, C. Ochoa and P. Malagamba. 1983. Tolerances of wild potato species from different altitudes to cold and heat. Planta 159(2): 112-118. https://doi.org/10.1007/BF00392980
  28. Team, R.C. 2013. R: A language and environment for statistical computing.
  29. Thammincha, S. 1981. Climatic variation in radial growth of scots pine and norway spruce and its importance in growth estimation. Acta Forestalia Fennica 171: 1-57.
  30. Turner, M.G., R.H. Gardner, and R.V. O'neill. 2001. Landscape ecology in theory and practice. Springer, New York. p.482.
  31. Valcu, C.M., C. Lalanne, C. Plomion, and K. Schlink. 2008. Heat induced changes in protein expression profiles of Norway spruce(Picea abies) ecotypes from different elevations. Proteomics 8(20): 4287-4302. https://doi.org/10.1002/pmic.200700992
  32. Wang, J., P. Rich, K.P. Price, and W.D. Kettle. 2004. Relations between ndvi and tree productivity in the central great plains. International Journal of Remote Sensing 25(16):3127-3138. https://doi.org/10.1080/0143116032000160499
  33. Wold, S., M. Sjostrom, and L. Eriksson. 2001. PLS-regression: A basic tool of chemometrics. Chemometrics and intelligent laboratory systems 58(2):109-130. https://doi.org/10.1016/S0169-7439(01)00155-1
  34. Yang, X., X. Xie, D.L. Liu, F. Ji, and L. Wang. 2015. Spatial interpolation of daily rainfall data for local climate impact assessment over greater sydney region. Advances in Meteorology 2015:1-12.
  35. Yu, H., J. Xu, E. Okuto, and E. Luedeling. 2012. Seasonal response of grasslands to climate change on the tibetan plateau. PLoS One 7(11):e49230. https://doi.org/10.1371/journal.pone.0049230