• Title/Summary/Keyword: MIN

Search Result 126,266, Processing Time 0.136 seconds

Characteristics of Sn-doped β-Ga2O3 single crystals grown by EFG method (EFG 법으로 성장한 β-Ga2O3 단결정의 Sn 도핑 특성 연구)

  • Tae-Wan Je;Su-Bin Park;Hui-Yeon Jang;Su-Min Choi;Mi-Seon Park;Yeon-Suk Jang;Won-Jae Lee;Yun-Gon Moon;Jin-Ki Kang;Yun-Ji Shin;Si-Yong Bae
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.33 no.2
    • /
    • pp.83-90
    • /
    • 2023
  • The β-Ga2O3 has the most thermodynamically stable phase, a wide band gap of 4.8~4.9 eV and a high dielectric breakdown voltage of 8MV/cm. Due to such excellent electrical characteristics, this material as a power device material has been attracted much attention. Furthermore, the β-Ga2O3 has easy liquid phase growth method unlike materials such as SiC and GaN. However, since the grown pure β-Ga2O3 single crystal requires the intentionally controlled doping due to a low conductivity to be applied to a power device, the research on doping in β-Ga2O3 single crystal is definitely important. In this study, various source powders of un-doped, Sn 0.05 mol%, Sn 0.1 mol%, Sn 1.5 mol%, Sn 2 mol%, Sn 3 mol%-doped Ga2O3 were prepared by adding different mole ratios of SnO2 powder to Ga2O3 powder, and β-Ga2O3 single crystals were grown by using an edge-defined Film-fed Growth (EFG) method. The crystal direction, crystal quality, optical, and electrical properties of the grown β-Ga2O3 single crystal were analyzed according to the Sn dopant content, and the property variation of β-Ga2O3 single crystal according to the Sn doping were extensively investigated.

Determining the Authenticity of Labeled Traceability Information by DNA Identity Test for Hanwoo Meats Distributed in Seoul, Korea (DNA 동일성 검사를 통한 서울지역 유통 한우육의 표시 이력정보 진위 판별)

  • Yeon-jae Bak;Mi-ae Park;Su-min Lee;Hyung-suk Park
    • Journal of Food Hygiene and Safety
    • /
    • v.38 no.1
    • /
    • pp.12-18
    • /
    • 2023
  • Beef traceability systems help prevent the distribution of Hanwoo (Korean native cattle) meat as imported beef. In particular, assigning a traceability number to each cattle can provide all information regarding the purchased Hanwoo meat to the consumers. In the present study, a DNA identity test was conducted on 344 samples of Hanwoo meat from large livestock product stores in Seoul between 2021 and 2022 to determine the authenticity of important label information, such as the traceability number. Traceability number mismatch was confirmed in 45 cases (13.1%). The mismatch rate decreased to 11.3% in 2022 from 14.7% in 2021, and the mismatch rate was higher in the northern region (16.9%) than in the southern region (10.2%). In addition, of the six brands, B and D showed satisfactory traceability system management, whereas E and A showed poor traceability system management, with significant differences (P<0.001). The actual traceability number confirmation rate was only 53.9% among the mismatch samples. However, examination of the authenticity of label information of the samples within the identified range revealed false marking in the order of the traceability number (13.1%), sex (2.9%), slaughterhouse name (2.2%), and grade (1.6%); no false marking of breed (Hanwoo) was noted. To prevent the distribution of erroneously marked livestock products, the authenticity of label information must be determined promptly. Therefore, a legal basis must be established mandating the filling of a daily work sheet, including the traceability number of beef, in partial meat subdivisions. Our findings can be used as reference data to guide the management direction of traceability systems for ensuring transparency in the distribution of livestock products.

Impact of Sluice Gates at Stream Mouth on Fish Community (하구의 배수갑문 설치 유무가 어류군집에 미치는 영향)

  • Kim, Jun-Wan;Kim, Kyu-Jin;Choi, Beom-Myeong;Yoon, Ju-Duk;Park, Bae-Kyung;Kim, Jong-Hak;Jang, Min-Ho
    • Korean Journal of Ecology and Environment
    • /
    • v.55 no.1
    • /
    • pp.49-59
    • /
    • 2022
  • Total of 325 estuaries in Korea were surveyed to analyze the effect of presence of sluice gate on the estuary environment and fish community from 2016 to 2018. Fish community in closed and open estuaries showed differences generally, and the relative abundance (RA) of primary freshwater species in the closed and migratory species in the open estuaries were high. The result of classifying species by habitat characteristics in closed and open estuaries showed similar tendencies at the estuaries of south sea and west sea. The relative abundances of primary freshwater species in the closed estuaries at the estuaries of south sea and west sea were the highest, but estuarine and migratory species were high in both closed and open estuaries at the estuaries of east sea. Primary freshwater species showed higher abundances in the closed estuaries with reduced salinity due to blocking of seawater since they are not resistant to salt. However, primary freshwater species in open estuaries at east sea was higher than that of the closed estuaries, which is considered to be the result of reflecting the characteristics (tide, sand bar, etc.) of the east sea. Korea Estuary Fish Assessment Index (KEFAI) was showed to be higher at open estuaries than closed in all sea areas (T-test, P<0.001), the highest KEFAI was observed in closed estuaries at south sea, and open estuaries in east sea. Fish community of closed and open estuaries in each sea areas showed statistically significant differences (PERMANOVA, East, Pseudo-F=3.0198, P=0.002; South, Pseudo-F=22.00, P=0.001; West, Pseudo-F=14.067, P=0.001). Fish assemblage similarity by sea areas showed a significant differences on fish community in closed and open estuaries at east sea, south sea, and west sea (SIMPER, Group dissimilarity, 85.85%, 88.36%, and 88.05%). This study provided information on the characteristics and distribution of fish community according to the types of estuaries. The results of this study can be used as a reference for establishing appropriate management plans according to the sea areas and type in the management and restoration of estuaries for future.

Comparative Analysis of Diversity Characteristics (γ-, α-, and β-diversity) of Biological Communities in the Korean Peninsula Estuaries (하구 순환 유지 여부에 따른 하구 주요 생물 군집별 다양성 특성 연구: 열린하구와 닫힌하구에서의 γ-, α- 및 β-다양성 비교)

  • Oh, Hye-Ji;Jang, Min-Ho;Kim, Jeong-Hui;Kim, Yong-Jae;Lim, Sung-Ho;Won, Doo-Hee;Moon, Jeong-Suk;Kwon, Soonhyun;Chang, Kwang-Hyeon
    • Korean Journal of Ecology and Environment
    • /
    • v.55 no.1
    • /
    • pp.84-98
    • /
    • 2022
  • Estuary is important in terms of biodiversity because it has the characteristics of transition waters, created by the mixing of fresh- and seawater. The estuarine water circulation provides a variety of habitats with different environments by inducing gradients in the chemical and physical environment, such as water quality and river bed structure, which are ultimately the main factors influencing biological community composition. If the water circulation is interrupted, the loss of brackish areas and the interception of migration of biological communities will lead to changes in the spatial distribution of biodiversity. In this study, among the sites covered by the Estuary Aquatic Ecosystem Health Assessment, we selected study sites where changes in biodiversity can be assessed by spatial gradient from the upper reaches of the river to the lower estuarine area. The α-, γ- and β-diversity of diatom, benthic macroinvertebrates, and fish communities were calculated, and they were divided into open and closed estuary data and compared to determine the trends in biodiversity variation due to estuarine circulation. As results, all communities showed higher γ-diversity at open estuary sites. The benthic macroinvertebrate community showed a clear difference between open and closed estuaries in β-diversity, consequently the estuarine transects were considered as a factor that decreases spatial heterogeneity of their diversity among sites. The biodiversity trends analyzed in this study will be used to identify estuaries with low γ- and β-diversity by community, providing a useful resource for further mornitoring and management to maintain estuarine health.

Mitigation of Insufficient Capacity Problems of Central Bus Stops by Controlling Effective Green Time (유효녹색시간 조정을 활용한 중앙버스정류장 용량 부족 완화 방안 연구)

  • Koo, Kyo Min;Lee, Jae Duk;Ahn, Se Young;Chang, Iljoon
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.1
    • /
    • pp.35-50
    • /
    • 2022
  • After the introduction of the central bus lane system, bus traffic was prioritized. This resulted in improved trust from bus users. However, the low capacity at the central bus stop reduces traffic speed and punctuality. In addition, physical constraints are inevitable because the construction of central bus lanes and bus stops considers the city's road geometry. Therefore, this study attempted to optimize the effective green time of the traffic signal system at the entrance and exit of the central bus stop to remedy its insufficient operational capacity. The Transit Capacity and Quality of Service Manual and Korea Highway Capacity Manual were used as the analysis methodologies. The number of stop areas for central bus stops to be built was determined by excluding variable physical factors, and field survey data collected from nine randomly selected central bus stops currently installed in Seoul were used. A scenario analysis was conducted on the central bus stops with insufficient capacity by adjusting the effective green time, and the capacity of the central bus stop was set as the dependent variable. According to the results, 26.7 percent of the central bus stops with insufficient capacity can solve the problem of insufficient capacity. Therefore, the results of this study can be verified by improving the operation level, and it can be effective even if the number of central bus stops calculated by engineering is not guaranteed during the planning stage of the central bus stop. As the number of central bus stops is expected to increase further as the number of central bus stops increases, it is necessary to improve the number of central bus stops. Therefore, it is hoped that the results presented in this study will be used as basic data for the improvement plan at the operational level before introducing the physical improvement plan.

Eliminatory Effect of Health Drink Containing Hovenia Dulcis Thunb Extract on Ethanol-Induced Hangover in Rats (헛개나무 열매 추출물을 함유한 건강음료의 숙취 제거 효과)

  • Park, Eun-Mi;Ye, Eun-Ju;Kim, Soo-Jung;Choi, Hyun-Im;Bae, Man-Jong
    • Journal of the Korean Society of Food Culture
    • /
    • v.21 no.1
    • /
    • pp.71-75
    • /
    • 2006
  • This study was conducted to investigate the eliminatory effect of health drink containing Hovenia dulcis Thunb extract on ethanol-induced hangover in rats. Male Sprague-Dawley rats weighing $200{\pm}10\;g$ were given health drink (10 mL/kg) or other company product(10 mL/kg) 30 min before or after 40% ethanol (5 g/kg body weight) ingestion. To study the effect of health drink on blood ethanol concentration, blood was taken from caudal artery at 1, 3, 5 hr and the animal were sacrificed 24 hr after ethanol ingestion. From 1 to 5 hr, health drink pre- or postdosing significantly decreased the ethanol levels in the blood. The acetaldehyde concentration showed decrement in health drink group and other company product group. The activities of ethanol, alcohol dehydrogenase and aldehyde dehydrogenase measured at postdosing, were also not altered by the administration of health drink. Alanine aminotransferase and aspartate aminotransferase activities showed unaltered resulted in all experimental groups compared with the normal group. These results suggest that oral intake of health drink containing Hovenia dulcis Thunb is effective on elimination of ethanol-induced hangover.

Usefulness of Canonical Correlation Classification Technique in Hyper-spectral Image Classification (하이퍼스펙트럴영상 분류에서 정준상관분류기법의 유용성)

  • Park, Min-Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.5D
    • /
    • pp.885-894
    • /
    • 2006
  • The purpose of this study is focused on the development of the effective classification technique using ultra multiband of hyperspectral image. This study suggests the classification technique using canonical correlation analysis, one of multivariate statistical analysis in hyperspectral image classification. High accuracy of classification result is expected for this classification technique as the number of bands increase. This technique is compared with Maximum Likelihood Classification(MLC). The hyperspectral image is the EO1-hyperion image acquired on September 2, 2001, and the number of bands for the experiment were chosen at 30, considering the band scope except the thermal band of Landsat TM. We chose the comparing base map as Ground Truth Data. We evaluate the accuracy by comparing this base map with the classification result image and performing overlay analysis visually. The result showed us that in MLC's case, it can't classify except water, and in case of water, it only classifies big lakes. But Canonical Correlation Classification (CCC) classifies the golf lawn exactly, and it classifies the highway line in the urban area well. In case of water, the ponds that are in golf ground area, the ponds in university, and pools are also classified well. As a result, although the training areas are selected without any trial and error, it was possible to get the exact classification result. Also, the ability to distinguish golf lawn from other vegetations in classification classes, and the ability to classify water was better than MLC technique. Conclusively, this CCC technique for hyperspectral image will be very useful for estimating harvest and detecting surface water. In advance, it will do an important role in the construction of GIS database using the spectral high resolution image, hyperspectral data.

Assessment of the Contribution of Weather, Vegetation and Land Use Change for Agricultural Reservoir and Stream Watershed using the SLURP model (II) - Calibration, Validation and Application of the Model - (SLURP 모형을 이용한 기후, 식생, 토지이용변화가 농업용 저수지 유역과 하천유역에 미치는 기여도 평가(II) - 모형의 검·보정 및 적용 -)

  • Park, Geun-Ae;Ahn, So-Ra;Park, Min-Ji;Kim, Seong-Joon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.2B
    • /
    • pp.121-135
    • /
    • 2010
  • This study is to assess the effect of potential future climate change on the inflow of agricultural reservoir and its impact to downstream streamflow by reservoir operation for paddy irrigation water supply using the SLURP. Before the future analysis, the SLURP model was calibrated using the 6 years daily streamflow records (1998-200398 and validated using 3 years streamflow data (2004-200698 for a 366.5 $km^2$ watershed including two agricultural reservoirs (Geumgwang8 and Gosam98located in Anseongcheon watershed. The calibration and validation results showed that the model was able to simulate the daily streamflow well considering the reservoir operation for paddy irrigation and flood discharge, with a coefficient of determination and Nash-Sutcliffe efficiency ranging from s 7 to s 9 and 0.5 to s 8 respectively. Then, the future potential climate change impact was assessed using the future wthe fu data was downscaled by nge impFactor method throuih bias-correction, the future land uses wtre predicted by modified CA-Markov technique, and the future ve potentiacovfu information was predicted and considered by the linear regression bpowten mecthly NDVI from NOAA AVHRR ima ps and mecthly mean temperature. The future (2020s, 2050s and 2e 0s) reservoir inflow, the temporal changes of reservoir storaimpand its impact to downstream streamflow watershed wtre analyzed for the A2 and B2 climate change scenarios based on a base year (2005). At an annual temporal scale, the reservoir inflow and storaimpchange oue, anagricultural reservoir wtre projected to big decrease innautumnnunder all possiblmpcombinations of conditions. The future streamflow, soossmoosture and grounwater recharge decreased slightly, whtre as the evapotransporation was projected to increase largely for all possiblmpcombinations of the conditions. At last, this study was analysed contribution of weather, vegetation and land use change to assess which factor biggest impact on agricultural reservoir and stream watershed. As a result, weather change biggest impact on agricultural reservoir inflow, storage, streamflow, evapotranspiration, soil moisture and groundwater recharge.

A Study on the Production Performance of Korean Native Chickens for Samgye Chicken Production (삼계용 토종닭의 생산능력 고찰)

  • Kigon Kim;Hyun-Wook Kim;Hyo Jun Choo;Jung Min Heo;Ki Suk Oh;Sang-Hyon Oh;See Hwan Sohn
    • Korean Journal of Poultry Science
    • /
    • v.50 no.2
    • /
    • pp.91-99
    • /
    • 2023
  • This study aimed to develop a high-productivity breed of Korean native Samgye chicken. We evaluated the production performance of six Korean native chicken combinations (KNC-SCYC, SCYD, SDYC, SDYD, SYYC, SYYD) and GSP-Hanhyup Korean native chickens, with Baeksemi chickens used as a control group. The performance test was conducted from hatching to 7 weeks of age on 756 chickens, and we measured survival rate, body weight, shank length, feed utility, and carcass yield. The overall survival rate was nearly 100% for all strains. However, body weight showed significant differences between strains at all ages (P<0.01), with Baeksemi weighing 863.8±76.9 g, GSP-Hanhyup weighing 804.7±72.5 g, and KNC-combinations weighing 543.0±61.8 g at 5 weeks of age. The duration needed to reach 850 g was estimated to be 34.5 days for Baeksemi, 37.5 days for GSP-Hanhyup, and 45.8-48.8 days for KNC-combinations. Carcass yield percentage was highest for KNC-SYYD combination at 63.3%, followed by Baeksemi at 60.4%, and GSP-Hanhyup at 56.1%. Shank length at 850 g body weight was 7.6 cm for KNC-SYYD combination, 7.8 cm for Baeksemi, and 8.0 cm for GSP-Hanhyup. The feed conversion ratio at 850 g body weight was 1.81 for Baeksemi, 2.17 for GSP-Hanhyup, and 2.27 for KNC-SCYC combination. Our results suggest that the KNC-SYYD combination and GSP-Hanhyup breed have the potential to be used in Samgye production due to their moderate growth performance, higher carcass yield, and shorter shank length, despite their lower growth productivity and feed efficiency when compared to Baeksemi.

Assessment of future hydrological behavior of Soyanggang Dam watershed using SWAT (SWAT 모형을 이용한 소양강댐 유역의 미래 수자원 영향 평가)

  • Park, Min Ji;Shin, Hyung Jin;Park, Geun Ae;Kim, Seong Joon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.4B
    • /
    • pp.337-346
    • /
    • 2010
  • Climate change has a huge impact on various parts of the world. This study quantified and analyzed the effects on hydrological behavior caused by climate, vegetation canopy and land use change of Soyanggang dam watershed (2,694.4 $km^2$) using the semi-distributed model SWAT (Soil Water Assessment Tool). For the 1997-2006 daily dam inflow data, the model was calibrated with the Nash-Sutcliffe model efficiencies between the range of 0.45 and 0.91. For the future climate change projection, three GCMs of MIROC3.2hires, ECHAM5-OM, and HadCM3 were used. The A2, A1B and B1 emission scenarios of IPCC (Intergovernmental Panel on Climate Change) were adopted. The data was corrected for each bias and downscaled by Change Factor (CF) method using 30 years (1977-2006, baseline period) weather data and 20C3M (20th Century Climate Coupled Model). Three periods of data; 2010-2039 (2020s), 2040-2069 (2050s), 2070-2099 (2080s) were prepared for future evaluation. The future annual temperature and precipitation were predicted to change from +2.0 to $+6.3^{\circ}C$ and from -20.4 to 32.3% respectively. Seasonal temperature change increased in all scenarios except for winter period of HadCM3. The precipitation of winter and spring increased while it decreased for summer and fall for all GCMs. Future land use and vegetation canopy condition were predicted by CA-Markov technique and MODIS LAI versus temperature regression respectively. The future hydrological evaluation showed that the annual evapotranspiration increases up to 30.1%, and the groundwater recharge and soil moisture decreases up to 55.4% and 32.4% respectively compared to 2000 condition. Dam inflow was predicted to change from -38.6 to 29.5%. For all scenarios, the fall dam inflow, soil moisture and groundwater recharge were predicted to decrease. The seasonal vapotranspiration was predicted to increase up to 64.2% for all seasons except for HadCM3 winter.