• Title/Summary/Keyword: MIMO nonlinear systems

Search Result 58, Processing Time 0.026 seconds

An Observer Design for MIMO Nonlinear Systems and Its Application to Induction Motor (다입력 다출력 비선형 시스템의 관측기 설계 및 인덕션 모터에 응용)

  • Lee, Sung-Ryul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.1
    • /
    • pp.42-48
    • /
    • 2008
  • This paper presents an observer design method for a special class of multi input multi output(MIMO) nonlinear systems. First, we characterize the class of MIMO nonlinear systems with a block triangular structure. Also, the observability matrices for SISO nonlinear systems are extended to MIMO systems. By using the generalized observability matrices, it is shown that under the boundedness conditions of system state and input, the proposed observer guarantees the local exponential stability of error dynamics. Finally, its application to induction motor is given to verify the proposed method.

Local Observer Design for MIMO Nonlinear Systems (MIMO 비선형 시스템의 로컬 관측기 설계)

  • Lee, Sung-Ryul
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.45 no.1
    • /
    • pp.9-14
    • /
    • 2008
  • This paper presents an observer design methodology for a special class of multi input multi output(MIMO) nonlinear systems. First, we characterize the class of MIMO nonlinear systems with a triangular structure. Also, the observability matrices that plays an important role in proving the convergence of the proposed observer are generalized to MIMO systems. By using the generalized observability matrices, it is shown that under the boundedness conditions of system state and input, the proposed observer guarantees the local exponential convergence to zero of the estimation error.

A Robust Global Exponential Stabilization of Uncertain Affine MIMO Nonlinear Systems with Mismatched Uncertainties by Multivariable Sliding Mode Control (다변수 슬라이딩 모드 제어에 의한 부정합조건 불확실성을 갖는 다입출력 비선형 시스템의 강인그로벌 지수 안정화)

  • Lee, Jung-Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.9
    • /
    • pp.1754-1760
    • /
    • 2011
  • In this paper, a systematic design of a robust nonlinear multivariable variable structure controller based on state dependent nonlinear form is presented for the control of MIMO uncertain affine nonlinear systems with mismatched uncertainties and matched disturbance. After a MIMO uncertain affine nonlinear system is represented in the form of state dependent nonlinear system, a systematic design of a robust nonlinear variable structure controller is presented. To be linear in the closed loop resultant dynamics, the linear sliding surface is applied. A corresponding diagonalized control input is proposed to satisfy the closed loop global exponential stability and the existence condition of the sliding mode on the linear sliding surface, which will be investigated in Theorem 1. Through a design example and simulation study, the usefulness of the proposed controller is verified.

An Observer Design for MIMO Nonlinear Systems

  • Lee, Sungryul;Yanghee Yee;Park, Mignon
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.4 no.3
    • /
    • pp.189-194
    • /
    • 2002
  • This paper presents a state observer design for a class of MTMO nonlinear systems that has a block triangular structure. For this, the extension of the existing design for SISO triangular systems to MIMO cases is provided. Since the gain of the proposed observer. depends on a nonlinear part as well as a linear one of a system, it improves the transient performance of the high gain ob-server. Also, by using a generalized similarity transformation for the error dynamics, it is shown that order some boundedness condi-tion, the proposed observer guarantees the global exponential convergence of the estimation error. Finally, we will give a simulation example to show the validity of our design methodology.

A Robust Observer Design for Nonlinear MIMO Plants using Time-Delayed Signals

  • Lee, Jeong-Wan;Chang, Pyung-Hun
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.1 no.1
    • /
    • pp.22-31
    • /
    • 1999
  • In this paper, a robust observer design method for nonlinear multi input multi-output(MINO) plants is presented. This method enables the extension of the time delay observer (TDO) for nonlinear SISO plants in the phase variable form to MIMO plants. The designed TDO reconstructs the states of the plant expressed in the generalized observability canonical form (GOBCF), yet requiring neither the transformation of a plant, nor the real time computation coordinates, the observer turned out to be computationally efficient and easy to design for nonlinear MIMO plants. In a simulation of a two-link manipulator with flexible joints, the control performances using TDO appeared to be similar to those using actual states and superior to those using numerical differentiation. Finally, in an experiment with a robot, it was confirmed that the TDO reconstructs the states reliability and TDO can be effectively used in a real closed-loop system.

  • PDF

Robust Adaptive Controller for MIMO Nonsquare Nonlinear Systems Using Universal Function Approximators

  • Park, Jang-Hyun;Seo, Ho-Joon;Park, Gwi-Tae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.40.4-40
    • /
    • 2001
  • This paper addresses the problem of designing robust adaptive output tracking control for a class of MIMO nonlinear systems which have different number of inputs and outputs The stability of the whole closed-loop system is guaranteed in the sense of Lyapunov and uniformly Itimately boundedness of the tracking error vector as well as estimated parameters are shown. In addition, we show that the restrictive assumptions on input gain matrix which is presumed in the past works can be eliminated by using proposed control law.

  • PDF

Adaptive Fuzzy Output Feedback Control based on Observer for Nonlinear Heating, Ventilating and Air Conditioning System

  • Baek, Jae-Ho;Hwang, Eun-Ju;Kim, Eun-Tai;Park, Mi-gnon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.9 no.2
    • /
    • pp.76-82
    • /
    • 2009
  • A Heating, Ventilating and Air Conditioning (HVAC) system is a nonlinear multi-input multi-output (MIMO) system. This system is very difficult to control the temperature and the humidity ratio of a thermal space because of complex nonlinear characteristics. This paper proposes an adaptive fuzzy output feedback control based on observer for the nonlinear HVAC system. The nonlinear HVAC system is linearized through dynamic extension. State observers are designed for estimating state variables of the HVAC system. Fuzzy systems are employed to approximate uncertain nonlinear functions of the HVAC system with unavailable state variables. The obtained controller compares with an adaptive feedback controller. Simulation is given to demonstrate the effectiveness of our proposed adaptive fuzzy method.

Sequential Loop Closing Identification of Hammerstein Models for Multiple-Input Multiple-Output Processes (다변수 Hammerstein 공정의 순차 확인법)

  • Park Ho Cheol;Koo Doe Gyoon;Lee Moon Yong;Lee Jietae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.12
    • /
    • pp.1280-1286
    • /
    • 2004
  • A lot of industrial chemical processes contain certain input nonlinearities even though they are controlled by several linear controllers. Here we investigate a sequential loop closing identification method for MIMO Hammerstein nonlinear processes with diagonal nonlinearities. The proposed method separates the identification of the nonlinear static function from that of the linear subsystem by using a relay feedback test and a triangular type signal test. From 2 n activations for n n MIMO nonlinear processes, we sequentially identify the whole range of the nonlinear static function as well as the transfer function matrix of the linear subsystem.

A servo design method for MIMO Wiener systems with nonlinear uncertainty

  • Kim, Sang-Hoon;Kunimatsu, Sadaaki;Fujii, Takao
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1960-1965
    • /
    • 2005
  • This paper presents theory for stability analysis and design of a servo system for a MIMO Wiener system with nonlinear uncertainty. The Wiener system consists of a linear time-invariant system(LTI) in cascade with a static nonlinear part ${\psi}$(y) at the output. We assume that the uncertain static nonlinear part is sector bounded and decoupled. In this research, we treat the static nonlinear part as multiplicative uncertainty by dividing the nonlinear part ${\psi}$(y) into ${\phi}$(y) := ${\psi}$(y)-y and y, and then we reduce this stabilizing problem to a Lur'e problem. As a result, we show that the servo system with no steady state error for step references can be constructed for the Wiener system.

  • PDF

Adaptive Robust Output Tracking for Nonlinear MMO Systems

  • Im, Kyu-Mann
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2003.06a
    • /
    • pp.177-182
    • /
    • 2003
  • The robust output tracking control problem of general nonlinear MIMO systems is discussed. The robustness against parameter uncertainties is considered. In this paper, we proposed the robust output tracking control scheme for a class of MIMO nonlinear dynamical systems using output feedback linearization method. The presented control scheme is based on the VSS. We assume that the nonlinear dynamical system is minimum phase, the relative degree of the system is r$_{1}$+r$_{2}$+…r$_{m}$$\leq$ n and zero dynamics is stable. It is shown that the outputs of the closed-loop system asymptotically track given output trajectories despite the uncertainties while maintaining the boundedness of all signals inside the loop. And we verified that the proposed control scheme is then applied to the control of a two degree of freedom (DOF) robotic manipulator with payload.d.

  • PDF