• Title/Summary/Keyword: MIM device

Search Result 96, Processing Time 0.023 seconds

Optical Behavior and Electrical Properties of Functional Dendrimer Thin Films (기능성 덴드리머 박막의 광학적 거동 및 전기적 특성)

  • 박재철;정상범;권영수
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.52 no.5
    • /
    • pp.201-205
    • /
    • 2003
  • We synthesized dendrimers containing light switchable units, azobenzene group. And the dendrimer containing 48 pyridinepropanol functional end group, which could form a complex structure with metal ions was synthesized. To apply to the molecular level devices or data storage system using Langmuir-Blodgett(LB) film, we firstly investigated the monolayer behavior using the surface pressure-area($\pi$-A) isotherms at air-water interface. And then the surface pressure shift of monolayer by light irradiation was also measured to the dendrimer with azobezene group. As a result, the monolayer of dendrimer with azobenzene group showed the reversible photo-switching behavior by the isomerization of azobenzene group in their periphery. The samples for electrical measurement were fabricated to two types which were pure dendrimer with pyridinepropanol group and its complexes with $Pt^4+$ ions by LB method. We have studied the electrical properties of the ultra thin dendrimer LB films investigated by the current-voltage(I-V) characteristics of Metal/Dendrimer LB films/Metal(MIM) structure. And we have investigated different results in the surface activity at the air-water interface as well as the electrical properties for the monolayers of pure dendrimer with pyridinevopanol group and its complex with $Pt^4+$ ions. In conclusion, it is demonstrated that the metal ion around dendrimer with pyri야nepropanol group can contribute to make formation of network structure among dendrimers and it result from the change of electrical properties. This results suggest that the dendrimers with azobenzene group and pvridinedropanol group can be applied to high efficient nano-device of molecular level.

Optical Behavior and Electrical Properties of Functional Dendrimer Thin Films (기능성 덴드리머 박막의 광학적 거동 및 전기적 특성)

  • 박재철;정상범;권영수
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.5
    • /
    • pp.201-201
    • /
    • 2003
  • We synthesized dendrimers containing light switchable units, azobenzene group. And the dendrimer containing 48 pyridinepropanol functional end group, which could form a complex structure with metal ions was synthesized. To apply to the molecular level devices or data storage system using Langmuir-Blodgett(LB) film, we firstly investigated the monolayer behavior using the surface pressure-area($\pi$-A) isotherms at air-water interface. And then the surface pressure shift of monolayer by light irradiation was also measured to the dendrimer with azobezene group. As a result, the monolayer of dendrimer with azobenzene group showed the reversible photo-switching behavior by the isomerization of azobenzene group in their periphery. The samples for electrical measurement were fabricated to two types which were pure dendrimer with pyridinepropanol group and its complexes with $Pt^4+$ ions by LB method. We have studied the electrical properties of the ultra thin dendrimer LB films investigated by the current-voltage(I-V) characteristics of Metal/Dendrimer LB films/Metal(MIM) structure. And we have investigated different results in the surface activity at the air-water interface as well as the electrical properties for the monolayers of pure dendrimer with pyridinevopanol group and its complex with $Pt^4+$ ions. In conclusion, it is demonstrated that the metal ion around dendrimer with pyri야nepropanol group can contribute to make formation of network structure among dendrimers and it result from the change of electrical properties. This results suggest that the dendrimers with azobenzene group and pvridinedropanol group can be applied to high efficient nano-device of molecular level.

Passive Device Library Implementation of LTCC Multilayer Board for Wireless Communications (무선통신용 LTCC 다층기판의 수동소자 라이브러리 구현)

  • Cho, Hak-Rae;Koo, Kyung Heon
    • Journal of Advanced Navigation Technology
    • /
    • v.23 no.2
    • /
    • pp.172-178
    • /
    • 2019
  • This paper has designed, fabricated, and analyzed the passive devices realized using low temperature co-fired ceramic (LTCC) multi layer substrates by dividing into the shrinkage process and the non-shrinkage process. Using two types of ceramic materials with dielectric constant 7 or 40, we have fabricated the same shape of various elements in 2 different processes and compared the characteristics. For the substrate of dielctric constant 40, compared with the shrinkage process which has 17% shrink in the X and Y directions with 36% shrink in the Z direction, the non-shrinkage process has 43% shrink in the Z direction without shrink in the X and Y directions, so high dimensional accuracy and surface flatness can be obtained. The inductances and capacitances of the fabricated elements are estimated from measurement using empirical analysis equations of parameters and implemented as a design library. Depending on the substrate and the process, the inductance and capacitance depending on the turn number of winding and unit area have been measured, and empirical polynomials are proposed to predict element values.

Characteristics of Low Temperature SiNx Films Deposited by Using Highly Diluted Silane in Nitrogen (고희석 SiH4 가스를 이용하여 증착한 저온 PECVD 실리콘 질화물 박막의 기계적, 전기적 특성연구)

  • No, Kil-Sun;Keum, Ki-Su;Hong, Wan-Shick
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.8
    • /
    • pp.613-618
    • /
    • 2012
  • We report on electrical and mechanical properties of silicon nitride ($SiN_x$) films deposited by a plasma enhanced chemical vapor deposition (PECVD) method at $200^{\circ}C$ from $SiH_4$ highly diluted in $N_2$. The films were also prepared from $SiH_4$ diluted in He for comparison. The $N_2$ dilution was also effective in improving adhesion of the $SiN_x$ films, fascilitating construction of thin film transistors (TFTs). Metal-insulator-semiconductor (MIS) and Metal-insulator-Metal (MIM) structures were used for capacitance-voltage (C-V) and current-voltage (I-V) measurements, respectively. The resistivity and breakdown field strength of the $SiN_x$ films from $N_2$-diluted $SiH_4$ were estimated to be $1{\times}10^{13}{\Omega}{\cdot}cm$, 7.4 MV/cm, respectively. The MIS device showed a hysteresis window and a flat band voltage shift of 3 V and 0.5 V, respectively. The TFTs fabricated by using these films showed a field-effect mobility of $0.16cm^2/Vs$, a threshold voltage of 3 V, a subthreshold slope of 1.2 V/dec, and an on/off ratio of > $10^6$.

Evaluation on Usefulness of Abdomen and Chest Motion Control Device (ABCHES) for the Tumor with a Large Respiratory Motion in Radiotherapy (호흡으로 인한 움직임이 큰 종양의 방사선치료 시 Abdomen and Chest Motion Control Device (ABCHES)의 유용성 평가)

  • Cho, Yoon-Jin;Jeon, Mi-Jin;Shin, Dong-Bong;Kim, Jong-Dae;Kim, Sei-Joon;Ha, Jin-Sook;Im, Jung-Ho;Lee, Ik-Jae
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.24 no.2
    • /
    • pp.85-93
    • /
    • 2012
  • Purpose: It is essential to minimize the respiratory-induced motion of involved organs in the Tomotherapy for tumor located in the chest and abdominal region. However, the application of breathing control system to Tomotherapy is limited. This study was aimed to investigate the possible application of the ABCHES system and its efficacy as a means of breathing control in the tomotherapy treatment. Materials and Methods: Five subjects who were treated with a Hi-Art Tomotherapy system for lung, liver, gallbladder and pancreatic tumors. All patients undertook trained on two breathing methodes using an ABCHES, free breathing methode and shallow breathing methode. When the patients could carry out the breathing control, 4D-CT scan was a total of 10 4D tomographic images were acquired. A radiologist resident manually drew the tumor region, including surrounding nomal organs, on each of CT images at the inhalation phase, the exhalation phase and the 40% phase (mid-inhalation) and average CT image. Those CT images were then exported to the Tomotherapy planning station. Data exported from the Tomotherapy planning station was analyzed to quantify characteristics of dose-volume histograms and motion of tumors. Organ motions under free breathing and shallow breathing were examined six directions, respectively. Radiation exposure to the surrounding organs were also measured and compared. Results: Organ motion is in the six directions with more than a 5 mm displacement. A total of 12 Organ motions occurred during free breathing while organ motions decreased to 2 times during shallow breathing under the use of Abches. Based on the quantitative analysis of the dose-volume histograms shallow breathing showed lower resulting values, compared to free breathing, in every measure. That is, treatment volume, the dose of radiation to the tumor and two surrounding normal organs (mean doses), the volume of healthy tissue exposed to radiation were lower at the shallow breathing state. Conclusion: This study proposes that the use of ABCHES is effective for the Tomotherapy treatment as it makes shortness of breathing easy for patients. Respiratory-induced tumor motion is minimized, and radiation exposure to surrounding normal tissues is also reduced as a result.

  • PDF

Electrical Property of the Li2O-2SiO2 Glass Sintered by Spark Plasma Sintering (Spark Plasma Sintering으로 제조한 Li2O-2SiO2 유리 소결체의 전기적 특성)

  • Yoon, Hae-Won;Song, Chul-Ho;Yang, Yong-Seok;Yoon, Su-Jong
    • Korean Journal of Materials Research
    • /
    • v.22 no.2
    • /
    • pp.61-65
    • /
    • 2012
  • A $Li_2O-2SiO_2$ ($LS_2$) glass was investigated as a lithium-ion conducting oxide glass, which is applicable to a fast ionic conductor even at low temperature due to its high mechanical strength and chemical stability. The $Li_2O-2SiO_2$ glass is likely to be broken into small pieces when quenched; thus, it is difficult to fabricate a specifically sized sample. The production of properly sized glass samples is necessary for device applications. In this study, we applied spark plasma sintering (SPS) to fabricate $LS_2$ glass samples which have a particular size as well as high transparency. The sintered samples, $15mm\phi{\times}2mmT$ in size, ($LS_2$-s) were produced by SPS between $480^{\circ}C$ and $500^{\circ}C$ at 45MPa for 3~5mim, after which the thermal and dielectric properties of the $LS_2$-s samples were compared with those of quenched glass ($LS_2$-q) samples. Thermal behavior, crystalline structure, and electrical conductivity of both samples were analyzed by differential scanning calorimetry (DSC), X-ray diffraction (XRD) and an impedance/gain-phase analyzer, respectively. The results showed that the $LS_2$-s had an amorphous structure, like the $LS_2$-q sample, and that both samples took on the lithium disilicate structure after the heat treatment at $800^{\circ}C$. We observed similar dielectric peaks in both of the samples between room temperature and $700^{\circ}C$. The DC activation energies of the $LS_2$-q and $LS_2$-s samples were $0.48{\pm}0.05eV$ and $0.66{\pm}0.04eV$, while the AC activation energies were $0.48{\pm}0.05eV$ and $0.68{\pm}0.04eV$, respectively.