Browse > Article
http://dx.doi.org/10.3365/KJMM.2012.50.8.613

Characteristics of Low Temperature SiNx Films Deposited by Using Highly Diluted Silane in Nitrogen  

No, Kil-Sun (Department of Nano Science and Technology, University of Seoul)
Keum, Ki-Su (Department of Nano Science and Technology, University of Seoul)
Hong, Wan-Shick (Department of Nano Science and Technology, University of Seoul)
Publication Information
Korean Journal of Metals and Materials / v.50, no.8, 2012 , pp. 613-618 More about this Journal
Abstract
We report on electrical and mechanical properties of silicon nitride ($SiN_x$) films deposited by a plasma enhanced chemical vapor deposition (PECVD) method at $200^{\circ}C$ from $SiH_4$ highly diluted in $N_2$. The films were also prepared from $SiH_4$ diluted in He for comparison. The $N_2$ dilution was also effective in improving adhesion of the $SiN_x$ films, fascilitating construction of thin film transistors (TFTs). Metal-insulator-semiconductor (MIS) and Metal-insulator-Metal (MIM) structures were used for capacitance-voltage (C-V) and current-voltage (I-V) measurements, respectively. The resistivity and breakdown field strength of the $SiN_x$ films from $N_2$-diluted $SiH_4$ were estimated to be $1{\times}10^{13}{\Omega}{\cdot}cm$, 7.4 MV/cm, respectively. The MIS device showed a hysteresis window and a flat band voltage shift of 3 V and 0.5 V, respectively. The TFTs fabricated by using these films showed a field-effect mobility of $0.16cm^2/Vs$, a threshold voltage of 3 V, a subthreshold slope of 1.2 V/dec, and an on/off ratio of > $10^6$.
Keywords
diclectrics; vapor deposition; electrical properties; conductivity/resistivity; PECVD; silicon nitride; low-temperature; TFT; highly-diluted gas;
Citations & Related Records
연도 인용수 순위
  • Reference
1 C. H. Lee, D. Striakhilev, and A. Nathan, IEEE Trans. Electron Devices 54, 1 (2007).   DOI
2 C. S. Yang, L. L. Smith, C. B. Artur, and G. Parsons, J. Vac. Sci. Tech. B18, 683 (2000).
3 J. G. Kim, Z. T. Park, Y. S. Choi, J. H. Boo, and Y. J. Yu, J. Kor. Inst. Met. & Mater. 41, 6 (2003).
4 K. S. Keum, J. D. Hwang, J. Y. Kim, and W. S. Hong, Korean J. Met. Mater. 50, 331 (2012).   DOI
5 H. Uchida, K. Takechi, S. Nishida, and S. Kaneko, Japan. J. Appl. Phys. 30, 3691 (1991).   DOI
6 I. Kobayashi, T. Ogawa, and S. Hotta, Japan. J. Appl. Phys. 31, 336 (1992).   DOI
7 A. Sazonov, D. Stryahilev, A. Nathan, and D. Bogomolova, J. Non-Cryst. Solids 1360, 299 (2002).
8 K. J. Park and N. Gregory. J. Parsons, Vac. Sci. Technol. A22, 6 (2004).
9 D. L. Smith, A. S. Alimonda, J. Von, and P. Frederick, J. Vac. Sci. Technol. B8, 551 (1990).
10 D. L. Smith, A. S. Alimonda, C. C. Chen, S. E. Ready, and B. Wacker, J. Electrochem. Soc. 137, 614 (1990).   DOI
11 A. Sazonov, A. Nathan, and D. Striakhilev, J. Non-Cryst. Solids 1329, 266 (2000).
12 S. Sitbon, M. C. Hugon, B. Agius, F. Abel, J. L. Courant, and M. Puech, J. Vac. Sci. Technol. A13, 2900 (1995).
13 K. Allaert, A. Van Calster, H. Loos, and A. Lequesne, J. Electrochem. Soc. 132, 1763 (1985).   DOI   ScienceOn
14 F. Delmotte, M. C. Hugon, B. Agiusa, and J. L. Courant, J. Vac. Sci. Technol. 15, 1919 (1997).   DOI   ScienceOn
15 M. J. Loboda and J. A. Seifferly, J. Mater. Res. 11, 391 (1996).   DOI
16 S. M. Sze, Physics of Semiconductor Devices 2nd Wiley New York (1981).