• Title/Summary/Keyword: MIDAS/CIVIL

Search Result 82, Processing Time 0.034 seconds

Numerical study on the connection type of inner-slab in double deck tunnel (복층터널 내부슬래브의 연결형식에 관한 수치해석적 연구)

  • Lee, Ho-Seong;Moon, Hyun-Koo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.18 no.5
    • /
    • pp.441-451
    • /
    • 2016
  • This study analyzed behavior of the segment lining considering connection type between inner-slab and segment lining for a double deck tunnel by Shield TBM. In order to establish the design requirements of inner-slab and segment lining in double deck tunnel, inner structure of double deck tunnel at each purpose was analyzed and compared connection type between inner-slab and segment lining. And analyses have been carried out through the beam-spring model by MIDAS Civil 2012. As a result of this study, inner-slab, connection type of between inner-slab and segment lining and Lateral earth pressure coefficients were analyzed to verify the significant design factors.

Ductility Demand-Based Seismic Design and Seismic Performance Evaluation of Urban Railway Bridge Pier (도시철도 고가교 및 교량 교각의 연성도 내진설계와 내진성능 평가)

  • Park, Seung-Hee;Nam, Min-Jun;Yoon, Jong-Ku;Kim, Jin-Ho
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.1220-1226
    • /
    • 2011
  • The purpose of this study is to assess the seismic performance of a reinforced concrete pier using ductility demand-based seismic design method and nonlinear earthquake analysis. A computer program named MIDAS/Civil(MIDAS IT,2009) for the analysis of the reinforced concrete pier was used. The bridge pier was designed by the ductility demand-based seismic design. In addition, a seismic performance was evaluated through both capacity spectrum method and nonlinear time history method. In order to determine the seismic performance of the bridge pier, the maximum response values from the capacity spectrum method and nonlinear time history analysis were compared each other.

  • PDF

Reinforcement Bulb Body Pull-out Resistance Force Behavior Characteristics according to Ground Conditions (지반조건에 따른 보강구근체 인발저항력 거동 특성)

  • An, JunYoung;Shim, JeongHoon;Jeong, JiSu;Lee, SeungHo
    • The Journal of Engineering Geology
    • /
    • v.27 no.1
    • /
    • pp.41-49
    • /
    • 2017
  • In this study, we tried to confirm the influence range in the ground due to Bulbed, Reinforcement change and ground conditions change through numerical analysis. By checking the increase width of the reinforcement effect accompanying the increase of Bulbed, grasping the trend accompanying the change of the ground conditions and deciding soil nail Reinforcement and Bulbed, so that economical construction will be carried out It can be judged that it can be utilized as basic material. In this paper, we analyzed the Displacement due to positional load of reinforcement by utilizing MIDAS GTS NX which is a universal numerical analysis program. In addition, it is necessary to ensure the diameter star economy of Bulbed size and Reinforcement by comparing / analyzing whether the Bulbed relaxation region of Reinforcement represents arbitrary characteristics in the ground in Sandy soil, Weathered granite soil ground due to soil nail pullout load Numerical analysis was conducted to select criteria that can be done.

Simplified Analysis of Superstructure Section Considering Diaphragm and Optimum Design Conditions for ILM Bridge (다이아프램이 고려된 ILM 교량 상부단면의 단순해석 및 최적설계조건)

  • Lee, Hwan-Woo;Park, Yong-Jin
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.5
    • /
    • pp.459-467
    • /
    • 2014
  • ILM(Incremental Launching Method) bridges pass both the middle of spans and supports during launching. The launching noses are used to minimize the maximum positive moments and negative moments of the superstructure occurring during launching for ILM bridges. In this study, the simplified analysis formula considering diaphragm to calculate the bending moment that occurs during launching is induced and analyzes the optimum design conditions considering diaphragm. The accuracy of the proposed simplified analysis formular compared to the MIDAS Civil has an error of less than 5%. There is a difference up to 13% in the moment between the cases when the diaphragm is considered and is not. In addition, the criteria for deciding the unit weight of equivalent cross section and average stiffness value of equivalent cross section that can be applied to the simplified analysis formula is proposed. In this study, an effective way to optimize the launching nose is proposed that the optimum design is taken in the condition of minimizing the negative moment because of the mechanic characteristic of ILM bridges.

3-Dimentional numerical study on dynamic behavior of connection between vertical shaft and tunnel under earthquake loading (3차원 수치해석을 이용한 지진 시 수직구-터널 접속부 동적 거동 분석)

  • Kim, Jung-Tae;Cho, Gye-Chun;Kang, Seok-Jun;Kim, Ki Jung;Hong, Eun-Soo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.5
    • /
    • pp.887-897
    • /
    • 2018
  • 3D time history analysis was performed on vertical shaft-tunnel connection to provide insight into the dynamic stress-strain behavior of the connection considering the effects of soil layers, periodic characteristics and wave direction of earthquakes. MIDAS GTS NX based on FEM (Finite Element Method) was used for this study. From this study, it is revealed that the maximum displacement occurred at the upper part of the connection when the long period seismic waves propagate through the tunnel direction in soft ground. Also, stress concentration occurs due to different behaviors of vertical shaft and tunnel, and the stress concentration could be influence for safety on the connection. The results of this study could be useful for the seismic performance design of vertical shaft-tunnel connection.

Properties of Hydration Heat with Compressive Strength Level of High Flowing Self-Compacting Concrete (고유동 자기충전 콘크리트의 압축강도 수준에 따른 수화발열 특성)

  • Choi, Yun Wang;Jung, Jea Gwone;Lee, Jae Nam;Kim, Byoung Kwon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.5A
    • /
    • pp.531-541
    • /
    • 2009
  • The research analyzes and investigates conventional concrete, hydration heat, set, and mechanical properties by making high flowing self-compacting concretes of binary blend and ternary blend as one of evaluations about the properties of the hydration heat of high flowing self-compacting concrete with a strength of 30, 50, and 70 MPa. In addition, it estimates concrete adiabatic temperatures by calculating a thermal property value of powder obtained by measuring a heat evolution amount for powder used in concrete, a thermal property value of concrete obtained by conducting a simple adiabatic temperature test, and a normal thermal property value of material used in concrete, using a simple equation. Moreover, it analyzes and investigates the hydration heat property of high flowing self-compacting concrete and the thermal stress caused by hydration heat by conducting a 3D temperature stress analysis for the hydration heat and the adiabatic temperature obtained by temperature analysis, using MIDAS CIVIL 06 program.

Inspecting Stablity of DSM method with Grouting on Tunnel Face using Chamber Test and Numericlal Analysis (토조실험과 수치해석을 이용한 막장면 그라우팅 DSM공법의 안정성 검토)

  • Kim, Young-Uk;Park, Young-Bok;Kim, Li-Sak;Kim, Nak-Kyeong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.3
    • /
    • pp.677-683
    • /
    • 2016
  • In urban areas, underground tunnel construction sites have spread widely to accommodate rapidly increasing traffic volume along with a high-degree economic growth. Earth tunneling might be adapted frequently for the underground space securing, and various tunneling methods have been developed to stabilize the tunnel face and crown. Among them, the DSM (divided shield method) is gaining popularity for its enhanced stability and construction efficiency. This method has its foundation from the Messer Shield method, which is one of the trenchless special tunneling methods. This study examined the effects of face reinforcement on construction the sequence through a large scale soil chamber test and numerical analyses. The chamber has a size of a 1/2 scale of the real tunnel. Surface settlements were measured according the tunneling process. Commercially available software, MIDAS GTS, was used for numerical analysis and its result was compared with the values obtained from the chamber test. The results of the study show that both settlements of the embanked soils and the stress of the tunnel girder are located within the safe criteria. Overall, this study provides basic data and the potential of using a reinforced tunnel face to enhance DSM applications.

A Study on the Behaviour of Existing Subway Tunnel due to Demolition of Old Buildings and Construction of New Buildings (기존 건물 철거 및 신축 공사에 따른 지하철터널 거동특성 연구)

  • Chung, Jeeseung;Lee, Kyuyoung;Kim, Yongsoo;Lee, Sungil
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.10
    • /
    • pp.23-28
    • /
    • 2014
  • Recent increasing of redevelopment project causes construction of new buildings after demolition of old buildings. However, the researches have been largely confirmed to analysis of behaviour characteristics of existing subway tunnel due to adjacent excavation which constructing new building so far. Accordingly, The ${\bigcirc}{\bigcirc}$ Building which will be built after demolishing existing parking lot is selected as a subject of study. And the purpose of this study is to analyze the effects on existing subway tunnel due to loading and unloading caused by demolition of upper buildings. The numerical analysis was performed by using the MIDAS/GTS program. Two cases for the numerical analysis were analyzed. The one is considering demolition of old buildings and the other is not considering it. This study is to analyze the effect on existing subway tunnel caused by demolition of upper building by analyzing numerical analysis results for tunnel displacement and lining stress. It was analyzed that the effects of considering the demolition of old buildings are larger than those of no considering it.

A Study on the Lateral Movement of Bridge Abutment Using Centrifuge Test and Numerical Analysis (원심모형시험과 수치해석을 이용한 교대 측방유동에 관한 연구)

  • Yoo, Wan-Kyu;Kim, Ki-Il;Kim, Byoung-Il
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.5
    • /
    • pp.1799-1804
    • /
    • 2010
  • In regard to fill loading structures such as bridge abutments and retaining walls on soft ground, the soft ground undergoes excessive deformation, which causes the lateral movement of the ground, resulting in increased risk of much damage. In this study, a centrifuge model test was conducted to check the possibility of lateral movement of a bridge abutment during back filling in a field, and a numerical analysis considering the lateral movement of the bridge abutment under the influence of the counterweight fill method applied during construction was carried out by using MIDAS/GTS as the FEM(Finite Element Method) program. The results of this study showed that the lateral movement of the abutment can exceed the allowable lateral movement value(15mm), and that the counterweight fill method was effective for the stability of the lateral movement.

Influence of Predominant Periods of Seismic Waves on a High-rise Building in SSI Dynamic Analyses with the Complete System Model (연속체 모델에 기초한 SSI 동적해석 시 지진파 탁월주기가 초고층 건물에 미치는 영향)

  • You, Kwangho;Kim, Juhyong;Kim, Seungjin
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.12
    • /
    • pp.5-14
    • /
    • 2019
  • Recently in Korea, researches on seismic analyses for high-rise buildings in a large city have been increasing because earthquakes have occurred. However, the ground conditions are not included in most of seismic researches and analyses on a high-rise building. Also the influence of the predominant period of a seismic wave is not considered in reality. Therefore, in this study, the influence of the predominant period of a seismic wave on the dynamic behavior of high-rise buildings was analyzed based on the complete system model which can consider the grounds. For this purpose, 2D dynamic analyses based on a linear time history analysis were performed using MIDAS GTS NX, a finite-element based program. Dynamic behavior was analyzed in terms of horizontal displacements, drift ratios, bending stresses, and building weak zones. As a result, in overall, the dynamic response of a high-rise building become bigger as the predominant period of a seismic wave become longer. It was also found that the predominant period had a greater influence than other parameters, ground conditions and peak ground acceleration.