• Title/Summary/Keyword: MEMS technology

Search Result 767, Processing Time 0.032 seconds

A micro wind sensor fabricated using MEMS technology (MEMS 기술을 이용한 초소형 풍향 풍속 센서)

  • Yoo, Eun-Shil;Shin, Kyu-Sik;Cho, Nam-Kyu;Pak, Jung-Ho;Lee, Dae-Sung
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1468-1469
    • /
    • 2008
  • 기상관측 분야에서는 풍속센서의 소형화 요구가 커지고 있어 Air flow sensor를 이용한 MEMS(Micro Electro Mechanical System) 풍향 풍속센서의 응용연구가 활발하다. MEMS 풍향 풍속 센서는 수 mm 크기를 가지면서도 바람의 세기와 함께 방향을 측정하여야 하는데, 센서 칩이 노출되어 있어 외부환경으로부터 영향을 받기 때문에 센서소자의 내오염성과 내구성 확보가 중요하다. 따라서 본 연구에서는 절연막으로 비점착성의 테프론 막을 적용하여 외부환경으로부터 영향을 줄일 수 있는 열감지 방식의 MEMS 풍향 풍속 센서 칩을 제작하였다. 테프론 코팅막을 이용한 풍향 풍속 센서는 0.1m/s의 resolution을 가지며, 최대 15m/s까지 측정이 가능하여, 오염에 강하고 발수성을 센서를 제작하였다.

  • PDF

Sub-ppm level MEMS gas sensor (서브 피피엠 레벨 미세기전 가스 센서)

  • Ko, Sang-Choon;Jun, Chi-Hoon;Song, Hyun-Woo;Park, Seon-Hee
    • Journal of Sensor Science and Technology
    • /
    • v.17 no.3
    • /
    • pp.183-187
    • /
    • 2008
  • A sub-ppm level MEMS gas sensor that can be used for the detection of formaldehyde (HCHO) is presented. It is realized by using a zinc oxide (ZnO) thin-film material with a Ni-seed layer as a sensing material and by bulk micromachining technology. To enhance sensitivity of the MEMS gas sensor with Ni-seed layer was embedded with ZnO sensing material and sensing electrodes. As experimental results, the changed sensor resistance ratio for HCHO gas was 9.65 % for 10 ppb, 18.06 % for 100 ppb, and 35.7 % for 1 ppm, respectively. In addition, the minimum detection level of the fabricated MEMS gas sensor was 10 ppb for the HCHO gas. And the measured output voltage was about 0.94 V for 10 ppb HCHO gas concentration. The noise level of the fabricated MEMS gas sensor was about 50 mV. The response and recovery times were 3 and 5 min, respectively. The consumption power of the Pt micro-heater under sensor testing was 184 mW and its operating temperature was $400^{\circ}C$.

RF MEMS Devices for Wireless Applications

  • Park, Jae Y.;Jong U. Bu;Lee, Joong W.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.1 no.1
    • /
    • pp.70-83
    • /
    • 2001
  • In this paper, the recent progress of RF MEMS research for wireless/mobile communications is reviewed. The RF MEMS components reviewed in this paper include RF MEMS switches, tunable capacitors, high Q inductors, and thin film bulk acoustic resonators (TFBARs) to become core components for constructing miniaturized on chip RF transceiver with multi-band and multi-mode operation. Specific applications are also discussed for each of these components with emphasis on for miniaturization, integration, and performance enhancement of existing and future wireless transceiver developments.

  • PDF

Applications of MEMS Technology on Medicine & Biology (의료 및 생물학에 응용되는 MEMS기술)

  • Chang, J.K.;Chung, S.;Han, D.C.
    • Transactions of Materials Processing
    • /
    • v.11 no.2
    • /
    • pp.108-113
    • /
    • 2002
  • The application fields of medicine and biology are spotlighted because of the increasing concentration of health and the abundance of life. MEMS is very good solution in this fields for the concept of point of care which makes systems more useful and spread wide. This paper shows the major fabrication schemes and application fields of microelectromechanical system specially in medicine and biology fields.

Optical components assembly by AIO bonding method (AIO 에 의한 Glass 광학부품 Bonding)

  • Potapov, S.;Ku, Janam;Yoon, Eungyeoul;Chang, Donghoon
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2002.07a
    • /
    • pp.254-255
    • /
    • 2002
  • Optical elements such as small glass lenses or optical fibers can be permanently bonded to substrates using Al inter-layer by applying Pressure and heating. As an example aspherical lens was bonded on a silicon V-groove. The bonding has high shear strength and good thermal cycling stability.

  • PDF

New Offset-compensation Technique for Capacitive MEMS-Sensor (정전형 MEMS 검출기의 새로운 Offset 보상 방법)

  • Min, Dong-Ki;Jeon, Jong-Up
    • Proceedings of the KIEE Conference
    • /
    • 2001.07c
    • /
    • pp.1896-1898
    • /
    • 2001
  • An offset problem caused by the static parasitic capacitors is analyzed and then some techniques to reduce their effect on the capacitive position sensor are presented. Also new offset compensation technique is proposed that by adjusting the magnitudes of the modulating signals independently, the charge imbalance between electrodes caused by the parasitic capacitors is eliminated without sensor gain variation. Simulation results are given to validate the proposed compensation technique.

  • PDF

Dishing Reduction on Polysilicon CMP for MEMS Application (MEMS 적용을 위한 폴리실리콘 CMP에서 디싱 감소에 대한 연구)

  • Park, Sung-Min;Jeong, Hae-Do
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.376-377
    • /
    • 2006
  • Chemical Mechanical Planarization (CMP) has emerged as an enabling technology for the manufacturing of multi-level metal interconnects used in high-density Integrated Circuits (IC). Recently, multi-level structures have been also widely used m the MEMS device such as micro engines, pressure sensors, micromechanical fluid pumps, micro mirrors and micro lenses. Especially, among the thin films available in IC technologies, polysilicon has probably found the widest range of uses in silicon technology based MEMS. This paper presents the characteristic of polysilicon CMP for multi-level MEMS structures. Two-step CMP process verifies that is possible to decrease dishing amount with two type of slurries characteristics. This approach is attractive because two-step CMP process can be decreased dishing amount considerably more then just one CMP process.

  • PDF

The Analysis in Measurement Performance MEMS Sensor Through the Low-Noise Vibration Measurement APP (저노이즈형 진동계측 앱을 통한 MEMS 센서의 계측성능분석)

  • Jung, Young-Seok;Yoon, Sung-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.17 no.1
    • /
    • pp.93-100
    • /
    • 2017
  • With increasing number construction of high-rise building which has about 40 to 60 floors there have been many kinds of problem which related with usage from vibration. To predict response acceleration, it is important to assess correct natural frequency. However, due to the noise of MEMS sensor, it is difficult to measure dynamic characteristic such as natural frequency when measuring ambient vibration using MEMS sensor within cell phone. Therefore, a comparative analysis on vibration measuring applications was performed after measuring ambient vibration of 2 skyscrappers which have height between 133.5~244.3m that are located in Seoul and Observation tower using I-jishin APP with noise reduction function of MEMS sensor in order to verify the effectiveness of low noise type vibration measurement APP.

Characteristics of MEMS Probe Tip with Multi-Rhodium Layer (이중 로듐 층을 갖는 멤스 프로브 팁의 특성)

  • Park, Dong-Gun;Park, Yong-Joon;Lim, Seul-Ki;Kim, Il;Shin, Sang-Hun;Cho, Hyun-Chul;Park, Seung-Pil;Kim, Dong-Won
    • Journal of the Korean institute of surface engineering
    • /
    • v.45 no.2
    • /
    • pp.81-88
    • /
    • 2012
  • Probe tip, which should have not only superior electrical characteristics but also good abrasion resistance for numerous contacts with semiconductor pads to confirm their availability, is essential for MEMS probe card. To obtain good durability of probe tip, it needs thick and crack-free rhodium layer on the tip. However, when the rhodium thickness deposited by electroplating increased, unwanted cracks by high internal stress led to serious problem of MEMS probe tip. This article reported the method of thick Rh deposition with Au buffer layer on the probe tip to overcome the problem of high internal stress and studied mechanical and electrical properties of that. MEMS probe tip with double-Rh layer had good contact resistance and durability during long term touch downs.

Optimum process conditions for supercritical fluid and co-solvents process for the etching, rinsing and drying of MEMS-wafers (초임계 유체와 공용매를 이용한 미세전자기계시스템 웨이퍼의 식각, 세정을 위한 최적공정조건)

  • Noh, Seong Rae;You, Seong-sik
    • Journal of the Semiconductor & Display Technology
    • /
    • v.16 no.3
    • /
    • pp.41-46
    • /
    • 2017
  • This study aims to select suitable co-solvents and to obtain optimal process conditions in order to improve process efficiency and productivity through experimental results obtained under various experimental conditions for the etching and rinsing process using liquid carbon dioxide and supercritical carbon dioxide. Acetone was confirmed to be effective through basic experiments and used as the etching solution for MEMS-wafer etching in this study. In the case of using liquid carbon dioxide as the solvent and acetone as the etching solution, these two components were not mixed well and showed a phase separation. Liquid carbon dioxide in the lower layer interfered with contact between acetone and Mems-wafer during etching, and the results after rinsing and drying were not good. Based on the results obtained under various experimental conditions, the optimum process for treating MEMS-wafer using supercritical CO2 as the solvent, acetone as the etching solution, and methanol as the rinsing solution was set up, and MEMS-wafer without stiction can be obtained by continuous etching, rinsing and drying process. In addition, the amount of the etching solution (acetone) and the cleaning liquid (methanol) compared to the initial experimental values can be greatly reduced through optimization of process conditions.

  • PDF