• Title/Summary/Keyword: MEMS sensor

Search Result 506, Processing Time 0.028 seconds

Fabrication of AlN piezoelectric micro power generator suitable with CMOS process and its characteristics (CMOS 공정에 적합한 AlN 압전 마이크로 발전기의 제작 및 특성)

  • Chung, Gwiy-Sang;Lee, Byung-Chul
    • Journal of Sensor Science and Technology
    • /
    • v.19 no.3
    • /
    • pp.209-213
    • /
    • 2010
  • This paper describes the fabrication and characteristics of AlN piezoelectric MPG(micro power generator). The micro energy harvester was fabricated to convert ambient vibration energy to electrical power as a AlN piezoelectric cantilever with Si proof-mass. To be compatible with CMOS process, AlN thin film was grown at low temperature by RF magnetron sputtering and micro power generators were fabricated by MEMS technologies. X-ray diffraction pattern proved that the grown AlN film had highly(002) orientation with low value of FWHM(full width at the half maximum, $\theta=0.276^{\circ}$) in the rocking curve around(002) reflections. The implemented harvester showed the $198.5\;{\mu}m$ highest membrane displacement and generated 6.4 nW of electrical power to $80\;k{\Omega}$ resistive load with $22.6\;mV_{rms}$ voltage from 1.0 G acceleration at its resonant frequency of 389 Hz. From these results, the AlN piezoelectric MPG will be possible to suitable with the batch process and confirm the possibility for power supply in portable, mobile and wearable microsystems.

Surface Micromachining for the Micro-heater Fabrication of Gas Sensors (가스 센서용 마이크로 히터의 표면 마이크로머시닝 기술)

  • Lee, Seok-Tae;Yun, Eui-Jung;Jung, Il-Yong;Lee, Kang-Won;Park, Hyung-Sik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.352-353
    • /
    • 2006
  • 가스센서용 마이크로 히터 제작에는 표연 마이크로 머시닝 또는 벌크 마이크로머시닝 기술을 이용한다. 표면 마이크로 머시닝에 의한 마이크로 히터 (MHP) 구조의 경우, 기판과 박막간의 폭이 좁기 때문에 에칭 공정 후 세정이 잘 이루어지지 않으면 열적 절연이 잘 이루어지지 않아서 히터와 센서의 성능을 저하시키는 원인이 된다. 본 연구에서는 표면 마이크로 머시닝 기술에 의한 가스 센서용 마이크로 히터를 제작한다. $SiO_2$$Si_3N_4$를 성분으로 하며, $100{\mu}m\;{\times}\;100{\mu}m$의 면적과 350 nm 의 두께를 갖는 가스 센서용 마이크로 히터를 제작하였다. 이를 위하여 ANSYS를 통한 유한요소해석에 의한 열분포 해석으로 최적구조를 확인하였다. 센서로의 열 전달 효율을 높이기 위해 센서 박막은 히터 위에 적층하였다. 실리콘 표면과 마이크로 히터와의 간격은 에칭 공정을 통하여 $2{\mu}m$로 하였으며, 이 공간에서는 에칭 및 세정 후에 이물질이 깨끗이 세정되지 않고 남아 있거나, 습식 공정 중에 수분의 장력에 의한 열전연성이 나빠질 수 있는 등 단점이 있다. 이는 건식 등방성 에칭 공정을 통하여 해결하였다.

  • PDF

Manufacture of TSVs (Through-Silicon Vias) based on Single-Walled Nanotubes (SWNTs)/Sn Composite at Low Temperature (저온 공정을 통해 제작이 가능한 Sn/SWNT 혼합 파우더 기반의 TSV구조 개발)

  • Jung, Dong Geon;Jung, Daewoong;Kong, Seong Ho
    • Journal of Sensor Science and Technology
    • /
    • v.28 no.2
    • /
    • pp.127-132
    • /
    • 2019
  • In this study, the fabrication of through-silicon vias (TSVs) filled with SWNTs/Sn by utilizing surface/bulk micromachining and MEMS technologies is proposed. Tin (Sn) and single-walled nanotube (SWNT) powders are used as TSV interconnector materials in the development of a novel TSV at low temperature. The measured resistance of a TSV filled with SWNT/Sn powder is considerably reduced by increasing the fraction of Sn and is lower than that of a TSV filled with only Sn. This is because of a decrease in the surface scattering of electrons along with an increase in the grain size of sintered SWNTs/Sn. The proposed method is conducted at low temperatures (< $400^{\circ}C$) due to the low melting temperature of Sn; hence, the proposed TSVs filled with SWNTs/Sn can be utilized in CMOS based applications.

K-DEV: A Borehole Deviation Logging Probe Applicable to Steel-cased Holes (철재 케이싱이 설치된 시추공에서도 적용가능한 공곡검층기 K-DEV)

  • Yoonho, Song;Yeonguk, Jo;Seungdo, Kim;Tae Jong, Lee;Myungsun, Kim;In-Hwa, Park;Heuisoon, Lee
    • Geophysics and Geophysical Exploration
    • /
    • v.25 no.4
    • /
    • pp.167-176
    • /
    • 2022
  • We designed a borehole deviation survey tool applicable for steel-cased holes, K-DEV, and developed a prototype for a depth of 500 m aiming to development of own equipment required to secure deep subsurface characterization technologies. K-DEV is equipped with sensors that provide digital output with verified high performance; moreover, it is also compatible with logging winch systems used in Korea. The K-DEV prototype has a nonmagnetic stainless steel housing with an outer diameter of 48.3 mm, which has been tested in the laboratory for water resistance up to 20 MPa and for durability by running into a 1-km deep borehole. We confirmed the operational stability and data repeatability of the prototype by constantly logging up and down to the depth of 600 m. A high-precision micro-electro-mechanical system (MEMS) gyroscope was used for the K-DEV prototype as the gyro sensor, which is crucial for azimuth determination in cased holes. Additionally, we devised an accurate trajectory survey algorithm by employing Unscented Kalman filtering and data fusion for optimization. The borehole test with K-DEV and a commercial logging tool produced sufficiently similar results. Furthermore, the issue of error accumulation due to drift over time of the MEMS gyro was successfully overcome by compensating with stationary measurements for the same attitude at the wellhead before and after logging, as demonstrated by the nearly identical result to the open hole. We believe that the methodology of K-DEV development and operational stability, as well as the data reliability of the prototype, were confirmed through these test applications.

Development of Android Smartphone App for Camera-based Remote Monitoring System (카메라 기반의 원격 모니터링 시스템을 위한 안드로이드 스마트폰 앱 개발)

  • Lee, Seong-Kyu;Kim, Jin-Soo;Kim, Young-Seup;Choi, Chul-Uong
    • Spatial Information Research
    • /
    • v.19 no.5
    • /
    • pp.87-96
    • /
    • 2011
  • Recently mobile users can access to internet using smart phone at any place and any time, through which they can search and share information. In addition, as the sensors with high-tech functions become cheaper and miniaturized along with the development of MEMS (micro-electo mechanical systems) technology, the extent to utilize smart phone is increasing. Smart phone is equipped with various sensors such as high-resolution camera, GPS, gyroscope and magnetic sensor, which is an appropriate system configuration for remote monitoring research using camera. The remote monitoring system requires camera for video and internet network to send video, for which it has a limitation that it is influenced by the monitoring location. This study is aimed to design and develop the monitoring app. which can be remotely monitored using smart phone technology. The developed monitoring app was designed to take images of ROI (region of interest) within the specified time and to automatically send the images to the server. The developed app. is also possible to be remotely controlled by SMS (short message service). The monitoring proposed in this study can take high-resolution images using CMOS built in the smart phone and send the images and information to the server automatically at any place and any time using 3G and Wi-Fi networks.

Fabrication of Thick Silicon Dioxide Air-Bridge and Coplanar Waveguide for RF Application Using Complex Oxidation Process and MEMS Technology (복합 산화법과 MEMS 기술을 이용한 RF용 두꺼운 산화막 에어 브리지 및 공면 전송선의 제조)

  • Kim, Kook-Jin;Park, Jeong-Yong;Lee, Dong-In;Lee, Bong-Hee;Bae, Yong-Hok;Lee, Jong-Hyun;Park, Se-Il
    • Journal of Sensor Science and Technology
    • /
    • v.11 no.3
    • /
    • pp.163-170
    • /
    • 2002
  • This paper proposes a $10\;{\mu}m$ thick oxide air-bridge structure which can be used as a substrate for RF circuits. The structure was fabricated by anodic reaction, complex oxidation and micromachining technology using TMAH etching. High quality films were obtained by combining low temperature thermal oxidation ($500^{\circ}C$, 1 hr at $H_2O/O_2$) and rapid thermal oxidation (RTO) process ($1050^{\circ}C$, 2 min). This structure is mechanically stable because of thick oxide layer up to $10\;{\mu}m$ and is expected to solve the problem of high dielectric loss of silicon substrate in RF region. The properties of the transmission line formed on the oxidized porous silicon (OPS) air-bridge were investigated and compared with those of the transmission line formed on the OPS layers. The insertion loss of coplanar waveguide (CPW) on OPS air-bridge was (about 2dB) lower than that of CPW on OPS layers. Also, the return loss of CPW on OPS air-bridge was less than about -20 dB at measured frequency region for 2.2 mm. Therefore, this technology is very promising for extending the use of CMOS circuitry to higher RF frequencies.

Test-retest Reliability and Intratest Repeatability of Measuring Cervical Range of Motion Using Inertial Measurement Unit (관성측정장치를 이용한 경추관절 가동범위 측정의 검사 내 반복성 및 검사-재검사 신뢰도 연구)

  • Kim, Hyun Ho;Kim, Kyung Wook;Park, Ji Min;Kim, Eun Seok;Lee, Min Jun;Kang, Jung Won;Lee, Sang Hoon;Park, Young Bae
    • Journal of Acupuncture Research
    • /
    • v.30 no.4
    • /
    • pp.25-33
    • /
    • 2013
  • Objectives : To assess the test-retest reliability and the intratest repeatability in measuring the cervical range of motion of healthy subjects with wireless microelectromechanical system inertial measurement unit(MEMS-IMU) system and to discuss the feasibility of this system in the clinical setting to evaluate the cervical spine musculoskeletal. Methods : 12 healthy people who were evaluated as no- or mild-disability with neck disability index were participated. Their cervical motion were measured with IMU twice in consecutive two days for the test-retest reliability study. Intratest repeatability was calculated in the two tests separately. The calculated intraclass correlation coefficients(ICC) were discussed and compared with the those of the previous studies. Results : Cervical range of motion data were acquired and statistically processed: left rotation($61.64^{\circ}$), right rotation($65.12^{\circ}$), extension($61.98^{\circ}$), flexion($52.81^{\circ}$), left bending($39.31^{\circ}$), right bending($41.08^{\circ}$). ICCs were 0.77~0.98(intratest repeatability) and 0.74~0.93 (test-retest reliability) in the primary motion. In the coupling motion, intratest repeatability ICCs were 0.93~ 0.99(transverse primary plane), 0.88~0.97(saggital primay plane), and 0.77~0.93(coronal primary plane). Test-retest reliability of coupling motion were 0.90~0.97(transverse primary plane), 0.00~0.72(saggital primary plane), and 0.04~0.76(coronal primary plane). Conclusions : Several types of range-of-motion devices are now on use in many fields including medicine, but the practicality of the devices in clinical use is questionable for the convenient and economical aspects. In this study, we presented the reliability of cervical range of motion test with the developed wireless MEMS-IMU system and discussed its potential utility in clinical use.

Development of Wireless Smart Sensing Framework for Structural Health Monitoring of High-speed Railway Bridges (고속 철도 교량의 구조 건전성 모니터링을 위한 스마트 무선 센서 프레임워크 개발)

  • Kim, Eunju;Park, Jong-Woong;Sim, Sung-Han
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.5
    • /
    • pp.1-9
    • /
    • 2016
  • Railroad bridges account for 25% of the entire high-speed rail network. Railway bridges are subject to gradual structural degradation or fatigue accumulation due to consistent and repeating excitation by fast moving trains. Wireless sensing technology has opened up a new avenue for bridge health monitoring owing to its low-cost, high fidelity, and multiple sensing capability. On the other hand, measuring the transient response during train passage is quite challenging that the current wireless sensor system cannot be applied due to the intrinsic time delay of the sensor network. Therefore, this paper presents a framework for monitoring such transient responses with wireless sensing systems using 1) real-time excessive vibration monitoring through ultra-low-power MEMS accelerometers, and 2) post-event time synchronization scheme. The ultra-low power accelerometer continuously monitors the vibration and trigger network when excessive vibrations are detected. The entire network of wireless smart sensors starts sensing through triggering and the post-event time synchronization is conducted to compensate for the time error on the measured responses. The results of this study highlight the potential of detecting the impact load and triggering the entire network, as well as the effectiveness of the post-event time synchronized scheme for compensating for the time error. A numerical and experimental study was carried out to validate the proposed sensing hardware and time synchronization method.

Fabrication and Characterization of Thermopile on Low-Stress $Si_3N_4$ Membrane for Microspectrometer Infrared Sensor (마이크로 스펙트로미터 적외선 센서용 저응력 $Si_3N_4$ Membrane 상에서의 Thermopile 제조 및 특성)

  • Choi, Gong-Hee;Park, Kwang-Bum;Park, Joon-Shik;Chung, Kwan-Soo
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.781-784
    • /
    • 2005
  • Twenty four types of thermopile for micro spectrometer infrared sensors were fabricated on low-stress $Si_3N_4$ membranes with $1.2{\mu}m-thickness$ using MEMS technology. Poly-Si thin film with thickness of 3500 ${\AA}$ as the first thermocouple material, was deposited by LPCVD method. And aluminum thin film with thickness of 6000 ${\AA}$ as the second thermocouple material, was deposited by sputtering method. Thermopile were designed and fabricated for optimum conditions by five parameters of thermocouple numbers (16 ${\sim}$ 48), thermocouple line widths (10 ${\mu}m$ ${\sim}$ 25 ${\mu}m$), thermocouple lengths (100 ${\mu}m$ ${\sim}$ 500 ${\mu}m$), membrane areas ($1^2\;mm^2$ ${\sim}$ $2.5^2\;mm^2$) and junction areas (150 ${\mu}m^2$ ${\sim}$ 750 ${\mu}m^2$), respectively. Electromotive forces of fabricated thermopile were measured 1.1 mV ${\sim}$ 7.4 mV at $400^{\circ}C$. It was thought that measurement results could be used for thermopile infrared sensors optimum structure for micro spectrometers.

  • PDF

A study on pre-bonding of Si wafer direct bonding at HF pre-treatment (HF 전처리시 Si기판 직접접합의 초기접합에 관한 연구)

  • Chung, Gwiy-Sang;Kang, Kyung-Doo
    • Journal of Sensor Science and Technology
    • /
    • v.9 no.2
    • /
    • pp.134-140
    • /
    • 2000
  • Si wafer direct bonding(SDB) technology is very attractive for both Si-on-insulator(SOI) electronic devices and MEMS applications. This paper presents on pre-bonding according to HF pre-treatment conditions in Si wafer direct bonding. The characteristics of bonded sample were measured under different bonding conditions of HF concentration and applied pressure. The bonding strength was evaluated by tensile strength method. A bond characteristic on the interface was analyzed by using FT-IR, and surface roughness according to HF concentration was analyzed by AFM. Si-F bonds on Si surface after HF pre-treatment are replaced by Si-OH during a DI water rinse. Consequently, hydrophobic wafer was bonded by hydrogen bonding of Si-OH$\cdots$(HOH$\cdots$HOH$\cdots$HOH)$\cdots$OH-Si. The pre-bonding strength depends on the HF pre-treatment condition before pre-bonding. (Min : $2.4kgf/cm^2{\sim}$Max : $14.9kgf/cm^2$)

  • PDF