• 제목/요약/키워드: MEMS characterization

검색결과 83건 처리시간 0.028초

Electrical/Optical Characterization of PZT Thin Films Deposited through Sol-Gel Processing

  • Hwang, Hee-Soo;Kwon, Kyoeng-Woo;Choi, Jeong-Wan;Do, Woo-Ri;Hwang, Jin-Ha
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제43회 하계 정기 학술대회 초록집
    • /
    • pp.361-361
    • /
    • 2012
  • PZT (Pb(Zr,Ti)O3) thin films have been used widely in the MEMS application, due to their inherent ferroelectric and piezoelectric properties. Such ferroelectricity induces much higher dielectric constants compared to those of the nonperovskite materials. In this work, the PZT thin films were deposited onto Indium-Tin-oxide (ITO) substrates through the spin-coating of PZT sols. The deposited PZT thin films were characterized in terms of the electrical and optical properties with special emphases on conductivity and optical constants. The detailed analysis techniques incorporate the dc-based current-voltage characteristics for the electrical properties, spectroscopic ellipsometry for optical characterization, atomic force microscopy for surface morphology, X-ray Photoelectron Spectroscopy for chemical bonding, Energy-dispersive X-ray Spectrometry for chemical analyses and X-ray diffraction for crystallinity. The ferroelectric phenomena were confirmed using capacitance-voltage measurements. The integrated physical/chemical features are attempted towards energy-oriented applications applicable to next-generation high-efficiency power generation systems.

  • PDF

PZT 박막의 압전특성에 미치는 공정변수의 효과 (Effect of Process Parameter on Piezoelectric Properties of PZT Thin films)

  • 김동국;지정범
    • 한국전기전자재료학회논문지
    • /
    • 제15권12호
    • /
    • pp.1060-1064
    • /
    • 2002
  • We have studied the effect of crystallization temperature, composition and film thickness, which are the fundamental processing parameters of lead zirconate titanate(PZT) thin film fabrication, in the respect of the piezoelectric properties by our pneumatic loading method(PLM). A great deal of research has been done in the field of characterization for piezoelectric thin films after the first report on the measurement for the piezoelectric coefficient of thin films in 1990. Even though the piezoelectric properties of thin films are very critical factors in the micro-electro mechanical system(MEMS) and thin film sensor devices, a few reports for the piezoelectric characterization are provided for the last decade unlikely the bulk piezoelectric devices. We have found that the piezoelectric properties of thin films are improved as the increase of crystallization temperature up to 750$\^{C}$ and this behavior can be also explained by the analysis of dielectric polarization hysteresis loop, X-ray diffraction and scanning electron microscopy. The effect of Zr/Ti composition has been also studied. This gives us the fact that the maximum piezoelectricity is found near Morphotropic Phase Boundary(MPB) as bulk PZT system does.

띠 굽힘 시험을 통한 100 nm 두께 금 박막의 기계적 특성 평가 (Mechanical characterization of 100 nm-thick Au thin film using strip bending test)

  • 김재현;이학주;한승우;백창욱;김종만;김용권
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.252-257
    • /
    • 2004
  • Nanometer-sized structures are being applied to many devices including micro/nano electronics, optoelectronics, quantum devices, MEMS/NEMS, biosensors, etc. Especially, the thin film with submicron thickness is a basic structure for fabricating these devices, but its mechanical behaviors are not well understood. The mechanical properties of the thin film are different from those of the bulk structure and are difficult to measure because of its handling inconvenience. Several techniques have been applied to mechanical characterization of the thin film, such as nanoindentation test, micro/nano tensile test, strip bending test, etc. In this study, we focus on the strip bending test because of its high accuracy and moderate specimen preparation efforts, and measure Au thin film, which is a very popular material in micro/nano electronic devices. Au film is deposited on Si substrate by evaporation process, of which thickness is 100nm. Using the strip bending test, we obtain elastic modulus, yield and ultimate tensile strength, and residual stress of Au thin film.

  • PDF

Characterization of Stiffness Coefficients of Silicon Versus Temperature using "Poisson's Rati" Measurements

  • Cho, Chun-Hyung;Cha, Ho-Young;Sung, Hyuk-Kee
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제16권2호
    • /
    • pp.153-158
    • /
    • 2016
  • The elastic material constants, stiffness constants ($c_{11}$, $c_{12}$, and $c_{44}$), are three unique coefficients that establish the relation between stress and strain. Accurate knowledge of mechanical properties and the stiffness coefficients for silicon is required for design of Micro-Electro-Mechanical Systems (MEMS) devices for proper modeling of stress and strain in electronic packaging. In this work, the stiffness coefficients for silicon as a function of temperature from $-150^{\circ}C$ to $+25^{\circ}C$ have been extracted by using the experimental measurements of Poisson's ratio (${\nu}$) of silicon in several directions.

PECVD와 ICP에 의해 증착된 불화유기박막의 나노트라이볼러지 특성 비교분실 (Comparative Analysis of Nanotribological Characterization of Fluorocarbon Thin Film by PECVD and ICP)

  • 김태곤;이수연;박진구;신형재
    • 한국마이크로전자및패키징학회:학술대회논문집
    • /
    • 한국마이크로전자및패키징학회 2001년도 추계 기술심포지움
    • /
    • pp.226-229
    • /
    • 2001
  • 현재 초소형 정밀기계(MEMS;Microelectromechanical System) 소자의 가장 큰 문제점으로 대두되고 있는 점착현상을 방지하기 위하여 불화유기박막을 증착하였다. Octafluorocyclobutane(C$_4$F$_{8}$)을 소스가스를 PECVD (Plasma Enhanced CVD)와 ICP (Inductively Coupled Plasma)를 이용하여 증착하였다. 여기에 Ar을 첨가하여 플라즈마의 반응성을 높여주었다. 형성된 불화유기박막의 나노트라이볼러지 특성을 살펴보기 위하여 AFM을 통하여 증착시킨 시편의 topography를 살펴보았다. 그리고 박막의 antiadhesion의 정도를 살펴보기 위하여 cantilever와 박막의 표면 사이에 존재하는 interaction force를 측정 하였고 AFM의 force curve mode를 이용하였다 PECVB를 이용하여 증착된 박막은 ICP를 이용한 박막보다 균일하지 못한 박막을 보였으며 attractive force가 강한 것으로 사료된다.

  • PDF

Non-Destructive Evaluation of Material Properties of Nanoscale Thin-Films Using Ultrafast Optical Pump-Probe Methods

  • Kim, Yun-Young;Krishnaswamy, Sridhar
    • 비파괴검사학회지
    • /
    • 제32권2호
    • /
    • pp.115-121
    • /
    • 2012
  • Exploration in microelectromechanical systems(MEMS) and nanotechnology requires evaluation techniques suitable for sub-micron length scale so that thermal and mechanical properties of novel materials can be investigated for optimal design of miro/nanostructures. The ultrafast optical pump-probe technique provides a contact-free and non-destructive way to characterize nanoscale thin-films, and its ultrahigh temporal resolution enables the study of heat-transport phenomena down to a sub-picosecond regime. This paper reviews the principle of optical pump-probe technique and introduces its application to the area of micro/nano-NDE.

기계식 마이크로 머시닝을 이용한 마이크로 형상의 특성과 비용 평가 (Fabrication and Characterization of Micro parts by Mechanical Micro Machining: Precision and Cost Estimation)

  • 강혁진;최운용;안성훈
    • 한국정밀공학회지
    • /
    • 제24권1호
    • /
    • pp.47-56
    • /
    • 2007
  • Recently, demands on mechanical micro machining technology have been increased in manufacturing of micro-scale precision shapes and parts. The main purpose of this research is to verify the accuracy and cost efficiency of the mechanical micro machining. In order to measure the precision and feasibility of mechanical micro machining, various micro features were machined. Aluminum molds were machined by a 3-axis micro stage in order to fabricate microchips with $200{\mu}m$ wide channel for capillary electrophoresis, then the same geometry of microchip was made by injection molding. To evaluate the cost efficiency of various micro manufacturing processes, cost estimation for mechanical micro machining was conducted, and actual costs of microchips fabricated by mechanical micro machining, injection molding, and MEMS (Micro electro mechanical system) were compared.

다결정 3C-SiC 마이크로 공진기 제작과 그 특성 (Fabrication and characterization of polycrystalline 3C-SiC mocro-resonators)

  • 이태원;정귀상
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 추계학술대회 논문집 Vol.21
    • /
    • pp.250-250
    • /
    • 2008
  • This paper describes the resonant characteristics of polycrystalline SiC micro resonators. The $1{\mu}m$ thick polycrystalline 3C-SiC cantilevers with different lengths were fabricated using a surface micromachining technique. Polycrystalline 3C-SiC micro resonators were actuated by piezoelectric element and their fundamental resonance was measured by a laser vibrometer in vacuum at room temperature. For the 100 ~ $40{\mu}m$ long cantilevers, the fundamental frequency appeared at 147.2 kHz - 856.3 kHz. The $100{\mu}m$ and $80{\mu}m$ long cantilevers have second mode resonant frequency at 857.5 kHz and 1.14 MHz. Therefore, polycrystalline 3C-SiC micro resonators are suitable for RF MEMS devices and bio/chemical sensor applications.

  • PDF

마이크로 Inchworm motor 용 Hinge 구조의 특성 해석 (Analysis of hinge structures for micro inchworm motor)

  • 김원효;권호남;김영윤;윤성식;이종현
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 추계학술대회 논문집
    • /
    • pp.1088-1091
    • /
    • 1997
  • This paper describes the characteristic of hinges on which a lever pivots within a limited angle due to the torque. The hinges are exerted by the thermally expanded actuators connected with a level through hinges. To enhance the stroke of inchworm actuator, FEM(Finite Element Method) was utilized for the characterization in view of stress displacement according to the variation of notch radius and notch width. As a result, notch width of the hinges plays an important part in improvement of micro inchworm actuator.

  • PDF

마이크로머시닝 기술을 이용한 3차원 마이크로 챔버형 글루코스 센서의 개발 (Development of Three-dimensional Chamber-type Glucose Sensor Using Micromachining Technology)

  • 김성호;김창교
    • 한국산학기술학회논문지
    • /
    • 제6권1호
    • /
    • pp.24-28
    • /
    • 2005
  • 3차원 실리콘 챔버를 갖는 $15.8{\times}15.8 mm^2$크기의 칩을 바이오 센서용으로 마이크로머시닝 기술을 이용하여 개발하였다. 비등방성 식각기술을 이용하여 (100)방향의 p형 실리콘 웨이퍼위에 마이크로 챔버를 형성하였다. 마이크로 챔버를 갖는 웨이퍼와 백금전극이 도포된 Pyrex 유리를 DGF-48S 접착제를 이용하여 접합하였다. 백금전극과 Ag/AgCl 기준전극에 의한 전기화학적 특성을 조사하였다.

  • PDF