• Title/Summary/Keyword: MEMS Package

Search Result 51, Processing Time 0.028 seconds

Structure optimization and characterization of a microbolometer for a CO2 detector (이산화탄소 감지소자를 위한 마이크로볼로미터 구조 최적화 및 특성연구)

  • Seo, Ho-Won;Kim, Tae-Geun;Moon, Sung
    • Journal of Sensor Science and Technology
    • /
    • v.17 no.1
    • /
    • pp.75-80
    • /
    • 2008
  • In this work, we optimized a microbolometer for application of a $CO_2$ detector by using MEMS technology. We fabricated a stable thermal isolation structure by varying the lengths of supporting legs which affect bolometer performance. We could fabricate more stable thermal isolation structure for the microbolometer through the results of ANSYS simulations, and minimize the fabrication processes by using bulk micromachining to use a $CO_2$ detector. The microbolometer shows a detectivity of $2.5{\times}109$ cmHz$^{1/2}$/W at a chopper frequency of 8 Hz and a bias current of $6.25\;{\mu}A$ with a vacuum package of about $3.0{\times}10.3$ torr. Therefore, we put to conclusion that the microbolometer optimized in this experiment could be useful for the application of a $CO_2$ detector.

Development of P.P.T CanSat System Applying Energy Harvesting System (에너지 하베스팅 시스템을 적용한 자가발전 P.P.T CanSat 시스템 개발)

  • Chae, Bong-Geon;Kim, Su-Hyeon;Kim, Hye-In;Oh, Hyun-Ung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.4
    • /
    • pp.315-323
    • /
    • 2018
  • CanSat has being attracted considerable attentions for the use as training purposes owing to its advantage that can implement overall system functions of typical commercial satellites within a small package like a beverage can. So-called P.P.T CanSat (Power Plant Trio Can Satellite), proposed in this study, is the name of a CanSat project which have participated in 2015 domestic CanSat competition. Its main objective is to self-power on a LED and a MEMS sensor module by using electrical energy harvested from solar, wind and piezo energy harvesting systems. This study describes the system design results, payload level function tests, flight test results and lessons learned from the flight tests.

Fabrication of Biomimetic MEMS Acoustic Sensor and Analysis of Its Frequency Characteristics (MEMS 기반 생체모사 음향센서 제작 및 주파수 특성 분석)

  • Hur, Shin;Jung, Young-Do;Lee, Young-Hwa;Song, Won-Joon;Kim, Wan-Doo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.31 no.5
    • /
    • pp.522-528
    • /
    • 2011
  • Artificial basilar membranes made of PVDF(polyvinylidene fluoride) are manufactured using microfabrication processes. The mechanical behavior of PVDF artificial basilar membrane was measured to evaluate its performance as a mechanical frequency analyzer using scanning LDV(laser Doppler vibrometer). The experimental setup consists of the microfabricated artificial basilar membrane, a loud speaker connected to an amplifier for generating acoustic pressure of specific spectral pattern, and a scanning LDV with controlling unit for measuring the displacement of the membrane on the incoming acoustic stimulation. The microfabricated artificial basilar membrane was attached tightly upon a package containing a chamber which can be filled with silicone oil before placed on the experimental setup stage. The experiment results showed that the microfabricated artificial basilar membrane has a property as a mechanical frequency analyzer.

Hermetic Characteristics of Negative PR (Negative PR의 기밀 특성)

  • Choi, Eui-Jung;Sun, Yong-Bin
    • Journal of the Semiconductor & Display Technology
    • /
    • v.5 no.2 s.15
    • /
    • pp.33-36
    • /
    • 2006
  • Many issues arose to use the Pb-free solder as adhesive materials in MEMS ICs and packaging. Then this study for easy and simple sealing method using adhesive materials was carried out to maintain hermetic characteristic in MEMS Package. In this study, Hermetic characteristic using negative PR (XP SU-8 3050 NO-2) as adhesive at the interface of Si test coupon/glass substrate and Si test coupon/LTCC substrate was examined. For experiment, the dispenser pressure was 4 MPa and the $200\;{\mu}m{\Phi}$ syringe nozzle was used. 3.0 mm/sec as speed of dispensing and 0.13 mm as the gap between Si test coupon and nozzle was selected to machine condition. 1 min at $65^{\circ}C$ and 15 min at $95^{\circ}C$ as Soft bake, $200\;mj/cm^2$ expose in 365 nm wavelength as UV expose, 1 min at $65^{\circ}C$ and 6 min at $95^{\circ}C$ as Post expose bake, 60 min at $150^{\circ}C$ as hard bake were selected to activation condition of negative PR. Hermetic sealing was achieved at the Si test coupon/ glass substrate and Si test coupon/LTCC substrate. The leak rate of Si test coupon/glass substrate was $5.9{\times}10^{-8}mbar-l/sec$, and there was no effect by adhesive method. The leak rate of Si test coupon/LTCC substrate was $4.9{\times}10^{-8}mbar-l/sec$, and there was no effect by dispensing cycle. Better leak rate value could be achieved to use modified substrate which prevent PR flow, to increase UV expose energy and to use system that controls gap automatically with vision.

  • PDF

Large deflection behavior of a flexible circular cantilever arc device subjected to inward or outward polar force

  • Al-Sadder, Samir Z.
    • Structural Engineering and Mechanics
    • /
    • v.22 no.4
    • /
    • pp.433-447
    • /
    • 2006
  • The problem of very large deflection of a circular cantilever arc device subjected to inward or outward polar force is studied. An exact elliptic integral solution is derived for the two cases and the results are checked using large displacement finite element analysis via the ANSYS package by performing a new novel modeling simulation technique for this problem. Excellent agreements have been obtained between the exact analytical solution and the numerical approach. From this study, a design chart for engineers is developed to predict the required value for the inward polar force for the device to switch on for a given angle forming the circular arc (${\theta}_o$). This study has several interesting applications in mechanical engineering, integrated circuit technology, nanotechnology and especially in microelectromechanical systems (MEMs) such as a MEM circular device switch subjected to attractive or repulsive magnetic forces due to the attachments of two magnetic poles at the fixed and at the free end of the circular cantilever arc switch device.

State of The Art in Semiconductor Package for Mobile Devices

  • Kim, Jin Young;Lee, Seung Jae
    • The Proceeding of the Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.2
    • /
    • pp.23-34
    • /
    • 2013
  • Over the past several decades in the microelectronics industry, devices have gotten smaller, thinner, and lighter, without any accompanying degradation in quality, performance, and reliability. One permanent and deniable trend in packaging as well as wafer fabrication industry is system integration. The proliferating options for system integration, recently, are driving change across the overall semiconductor industry, requiring more investment in developing, ramping and supporting new die-, wafer- and board-level solution. The trend toward 3D system integration and miniaturization in a small form factor has accelerated even more with the introduction of smartphones and tablets. In this paper, the key issues and state of the art for system integration in the packaging process are introduced, especially, focusing on ease transition to next generation packaging technologies like through silicon via (TSV), 3D wafer-level fan-out (WLFO), and chip-on-chip interconnection. In addition, effective solutions like fine pitch copper pillar and MEMS packaing of both advanced and legacy products are described with several examples.

Development of Multi-body Data Conversion Program for Torque Converter Analysis (토크컨버터 해석을 위한 다물체 자료 변환 프로그램 개발)

  • Lee, Jae-Chul;Chun, Doo-Man;Ahn, Sung-Hoon;Yeo, Jun-Cheol;Jang, Jae-Duk
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.2
    • /
    • pp.58-65
    • /
    • 2008
  • The finite element programs have been developed for structure, collision, flow, dynamics, heat transfer, acoustics, electromagnetism, MEMS (Micro Electro Mechanical Systems), and etc. These programs can be classified as either "package" program or "single purpose" program. Single purpose programs usually have convenient and powerful functions, but these programs have limited expandability to different fields of analysis. Therefore, the method to converter the analysis results of single purpose program to other programs is needed. In the research, multi-body data conversion methods of 1) finite element model and 2) solid model were created to convert fluid analysis result of CFD-ACE+ to ANSYS data structure. Automatic boundary condition algorithms were developed for blade, and finite element model was compared with solid model. It is expected that, by sealess data transfer, the Multi-body Data Conversion Program could reduce the development period of torque converters.

Fabrication of MCA Valve For MEMS (MEMS용 적층형 압전밸브의 제작)

  • Kim, Jae-Min;Yun, Jae-Young;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.04b
    • /
    • pp.129-132
    • /
    • 2004
  • This paper describes the design, fabrication and characteristics of a piezoelectric valve using MCA(Multilayer ceramic actuator). The MCA valve, which has the buckling effect, consists of three separate structures; MCA, a valve actuator die and an a seat die. The design of the actuator die was done by FEM modeling and displacement measurement, respectively. The valve seat die with 6 trenches was made, and the actuator die, which is driven to MCA under optimized conditions, was also fabricated. After Si-wafer direct bonding between the seat die and the actuator die, MCA was also anodic bonded to the seat/actuator die structure. PDMS sealing pad was fabricated to minimize a leak-rate. It was also bonded to seat die and SUS package. The MCA valve shows a flow rate of 9.13 sccm at a supplied voltage of 100 V with a 50 % duty cycle, maximum non-linearity was 2.24 % FS and leak rate was $3.03{\times}10^{-8}\;pa{\cdot}m^3/cm^2$. Therefore, the fabricated MCA valve is suitable for a variety of flow control equipment, a medical bio-system, automobile and air transportation industry.

  • PDF

Experimental and Numerical Study of Thermal Properties about various forms of Micro-heater (다양한 형상을 갖는 마이크로 히터의 열특성에 관한 실험 및 전산해석적 연구)

  • Kim, Jin-Woo;Kim, Jae-Choon;Lee, Jun-Yub;Chung, Jin-Taek
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1957-1962
    • /
    • 2008
  • As a field of MEMS, micro-heater fabricated by Au is being introduced and developed in recent years. Previous studies about thermal properties of various forms of micro-heater were not sufficient. In this work, numerical and experimental analysis of the heat generation and the temperature distribution of micro-heater packages for 8 different geometric cases were studied. We fabricated a micro-heater package with silicon wafer, on which Cr/Au layer was laminated before 8 geometric forms of micro-heater were patterned. In each cases, temperature distribution was measured with IR thermal camera. According to the experimental results, which show a good agreement with the results analyzed by CFD, it was found that at 0.5W, the temperature of micro-heater chip which contained $20000{\mu}m$-long, serpentine shaped micro-heater was elevated to a relatively high temperature of $78^{\circ}C$ Consequently, we proposed a geometry of micro-heater which has effective thermal characteristics.

  • PDF

Fabrication and Characteristics of a Piezoelectric Valve for MEMS using a Multilayer Ceramic Actuator (적층형 세라믹 엑추에이터를 이용한 MEMS용 압전밸브의 제작 및 특성)

  • 정귀상;김재민;윤석진
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.5
    • /
    • pp.515-520
    • /
    • 2004
  • We report on the development of a Piezoelectric valvc that is designed to have a high reliability for fluid control systems, such as mass flow control, transportation and chemical analysis. The valve was fabricated using a MCA(multilayer ceramic actuator), which has a low consumption power, high resolution and accurate control. The fabricated valve is composed of MCA, a valve actuator die and an seat die. The design of the actuator dic was done by FEM(finite element method) modeling, respectively. And, the valve seat die with 6 trenches was made. and the actuator die, which possible to optimize control to MCA, was fabricated. After Si-wafer direct bonding between the seat die and the actuator die, MCA was also anodic bonded to the scat/actuator die structure. PDMS(poly dimethylsiloxane) sealing pad was fabricated to minimize a leak-rate. It was also bonded to scat die and stainless steel package. The flow rate was 9.13 sccm at a supplied voltage of 100 V with a 50 % duty ratio and non-linearity was 2.24 % FS. From these results, the fabricated MCA valve is suitable for a variety of flow control equipments, a medical bio-system, semiconductor fabrication process, automobile and air transportation industry with low cost, batch recess and mass production.