• Title/Summary/Keyword: MEMS Package

Search Result 51, Processing Time 0.023 seconds

Wafer Level Packaging of RF-MEMS Devices with Vertical feed-through (Ultra Thin 실리콘 웨이퍼를 이용한 RF-MEMS 소자의 웨이퍼 레벨 패키징)

  • 김용국;박윤권;김재경;주병권
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.12S
    • /
    • pp.1237-1241
    • /
    • 2003
  • In this paper, we report a novel RF-MEMS packaging technology with lightweight, small size, and short electric path length. To achieve this goal, we used the ultra thin silicon substrate as a packaging substrate. The via holes lot vortical feed-through were fabricated on the thin silicon wafer by wet chemical processing. Then, via holes were filled and micro-bumps were fabricated by electroplating. The packaged RF device has a reflection loss under 22 〔㏈〕 and a insertion loss of -0.04∼-0.08 〔㏈〕. These measurements show that we could package the RF device without loss and interference by using the vertical feed-through. Specially, with the ultra thin silicon wafer we can realize of a device package that has low-cost, lightweight and small size. Also, we can extend a 3-D packaging structure by stacking assembled thin packages.

RF-MEMS 소자를 위한 저손실 웨이퍼 레벨 패키징

  • 박윤권;이덕중;박흥우;송인상;김정우;송기무;박정호;김철주;주병권
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2001.11a
    • /
    • pp.124-128
    • /
    • 2001
  • We apply for the first time a low cost and loss wafer level packaging technology for RF-MEMS device. The proposed structure was simulated by finite element method (FEM) tool (HFSS of Ansoft). S-parameter measured of the package shows the return loss (S11) of 20dB and the insertion loss (S21) of 0.05dB.

  • PDF

LTCC-Based Packaging Technology for RF MEMS Devices (LTCC를 이용한 RF MEMS 소자의 실장법)

  • Hwang, Kun-Chul;Park, Jae-Hyoung;Baek, Chang-Wook;Kim, Yong-Kweon
    • Proceedings of the KIEE Conference
    • /
    • 2002.07c
    • /
    • pp.1972-1975
    • /
    • 2002
  • In this paper, we have proposed low temperature co-fired ceramic (LTCC) based packaging for RF MEMS devices. The packaging structure is designed and evaluated with 3D full field simulation. 50 ${\Omega}$ matched coplanar waveguide(CPW) transmission line is employed as the test vehicle to evaluate the performances of the proposed package structure. The line is encapsulated with the LTCC packaging lid and connected to the via feed line. To reduce the insertion loss due to the packaging lid, the cavity with via post is formed in the packaging lid. The performances of the package structure is simulated with the different cavity depth and via-to-via length. Simulation results show that the proposed package structure has reflection loss better than 20 dB and insertion loss lower than 0.1 dB from DC to 30 GHz with the cavity depth and via-to-via length of 300 ${\mu}m$ and 350 ${\mu}m$, respectively. To realize the designed package structure, the cavity patterning is tested using the sandblast of LTCC.

  • PDF

Mechanical Reliability Issues of Copper Via Hole in MEMS Packaging (MEMS 패키징에서 구리 Via 홀의 기계적 신뢰성에 관한 연구)

  • Choa, Sung-Hoon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.15 no.2
    • /
    • pp.29-36
    • /
    • 2008
  • In this paper, mechanical reliability issues of copper through-wafer interconnections are investigated numerically and experimentally. A hermetic wafer level packaging for MEMS devices is developed. Au-Sn eutectic bonding technology is used to achieve hermetic sealing, and the vertical through-hole via filled with electroplated copper for the electrical connection is also used. The MEMS package has the size of $1mm{\times}1mm{\times}700{\mu}m$. The robustness of the package is confirmed by several reliability tests. Several factors which could induce via hole cracking failure are investigated such as thermal expansion mismatch, via etch profile, and copper diffusion phenomenon. Alternative electroplating process is suggested for preventing Cu diffusion and increasing the adhesion performance of the electroplating process. After implementing several improvements, reliability tests were performed, and via hole cracking as well as significant changes in the shear strength were not observed. Helium leak testing indicated that the leak rate of the package meets the requirements of MIL-STD-883F specification.

  • PDF

Package-Platformed Linear/Circular Polarization Reconfigurable Antenna Using an Integrated Silicon RF MEMS Switch

  • Hyeon, Ik-Jae;Jung, Tony J.;Lim, Sung-Joon;Baek, Chang-Wook
    • ETRI Journal
    • /
    • v.33 no.5
    • /
    • pp.802-805
    • /
    • 2011
  • This letter presents a K-band polarization reconfigurable antenna integrated with a silicon radio frequency MEMS switch into the form of a compact package. The proposed antenna can change its state from linear polarization (LP) to circular polarization (CP) by actuating the MEMS switch, which controls the configuration of the coupling ring slot. Low-loss quartz is used for a radiating patch substrate and at the same time for a packaging lid by stacking it onto the MEMS substrate, which can increase the system integrity. The fabricated antenna shows broadband impedance matching and exhibits high axial ratios better than 15 dB in the LP and small axial ratios in the CP, with a minimum value of 0.002 dB at 20.8 GHz in the K-band.

Wafer-Level Package of RF MEMS Switch using Au/Sn Eutectic Bonding and Glass Dry Etch (금/주석 공융점 접합과 유리 기판의 건식 식각을 이용한 고주파 MEMS 스위치의 기판 단위 실장)

  • Kang, Sung-Chan;Jang, Yeon-Su;Kim, Hyeon-Cheol;Chun, Kuk-Jin
    • Journal of Sensor Science and Technology
    • /
    • v.20 no.1
    • /
    • pp.58-63
    • /
    • 2011
  • A low loss radio frequency(RF) micro electro mechanical systems(MEMS) switch driven by a low actuation voltage was designed for the development of a new RF MEMS switch. The RF MEMS switch should be encapsulated. The glass cap and fabricated RF MEMS switch were assembled by the Au/Sn eutectic bonding principle for wafer-level packaging. The through-vias on the glass substrate was made by the glass dry etching and Au electroplating process. The packaged RF MEMS switch had an actuation voltage of 12.5 V, an insertion loss below 0.25 dB, a return loss above 16.6 dB, and an isolation value above 41.4 dB at 6 GHz.

Low Actuation Voltage Capacitive Shunt RF-MEMS Switch Using a Corrugated Bridge with HRS MEMS Package

  • Song Yo-Tak;Lee Hai-Young;Esashi Masayoshi
    • Journal of electromagnetic engineering and science
    • /
    • v.6 no.2
    • /
    • pp.135-145
    • /
    • 2006
  • This paper presents the theory, design, fabrication and characterization of the novel low actuation voltage capacitive shunt RF-MEMS switch using a corrugated membrane with HRS MEMS packaging. Analytical analyses and experimental results have been carried out to derive algebraic expressions for the mechanical actuation mechanics of corrugated membrane for a low residual stress. It is shown that the residual stress of both types of corrugated and flat membranes can be modeled with the help of a mechanics theory. The residual stress in corrugated membranes is calculated using a geometrical model and is confirmed by finite element method(FEM) analysis and experimental results. The corrugated electrostatic actuated bridge is suspended over a concave structure of CPW, with sputtered nickel(Ni) as the structural material for the bridge and gold for CPW line, fabricated on high-resistivity silicon(HRS) substrate. The corrugated switch on concave structure requires lower actuation voltage than the flat switch on planar structure in various thickness bridges. The residual stress is very low by corrugating both ends of the bridge on concave structure. The residual stress of the bridge material and structure is critical to lower the actuation voltage. The Self-alignment HRS MEMS package of the RF-MEMS switch with a $15{\Omega}{\cdot}cm$ lightly-doped Si chip carrier also shows no parasitic leakage resonances and is verified as an effective packaging solution for the low cost and high performance coplanar MMICs.

RF MEMS Package 기술 및 응용

  • 김진양;이해영
    • The Proceeding of the Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.2
    • /
    • pp.60-70
    • /
    • 2002
  • 최근 고성능/고집적 RF 소자 및 시스템들의 경박 단소화 추세에 따라 RF 무선 통신 분야에도 초소형미세 가공 기술인 MEMS 기술이 크게 주목받고 있다. 이에 본 고에서는 RF 부품 및 시스템을 MEMS 기술로서 실장하는 RF MEMS 패키지 기술에 대하여 간단히 살펴보았다. 우선, 실리콘 기반의 MEMS 패키지가 우수한 열 전달 특성과 저 손실의 고주파특성으로 인해 RF 시스템의 실장에 매우 적합함을 확인하였다. 또한, MEMS 기술을 이용함으로써 RF회로와 패키지 제작 공정이 동시에 이루어질 수 있도록 하는 일괄터리공정에 대하여 소개하였다.

Effects of Package Induced Stress on MEMS Device and Its Improvements (패키징으로 인한 응력이 MEMS 소자에 미치는 영향 분석 및 개선)

  • Choa Sung-Hoon;Cho Yong Chul;Lee Moon Chul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.11 s.176
    • /
    • pp.165-172
    • /
    • 2005
  • In MEMS (Micro-Electro-Mechanical System), packaging induced stress or stress induced structure deformation becomes increasing concerns since it directly affects the performance of the device. In the decoupled vibratory MEMS gyroscope, the main factor that determines the yield rate is the frequency difference between the sensing and driving modes. The gyroscope, packaged using the anodic bonding at the wafer level and EMC (epoxy molding compound) molding, has a deformation of MEMS structure caused by thermal expansion mismatch. This effect results in large distribution in the frequency difference, and thereby a lower yield rate. To improve the yield rate we propose a packaged SiOG (Silicon On Glass) process technology. It uses a silicon wafer and two glass wafers to minimize the wafer warpage. Thus the warpage of the wafer is greatly reduced and the frequency difference is more uniformly distributed. In addition. in order to increase robustness of the structure against deformation caused by EMC molding, a 'crab-leg' type spring is replaced with a semi-folded spring. The results show that the frequency shift is greatly reduced after applying the semi-folded spring. Therefore we can achieve a more robust vibratory MEMS gyroscope with a higher yield rate.

Vacuum Packaging of MEMS (Microelectromechanical System) Devices using LTCC (Low Temperature Co-fired Ceramic) Technology (LTCC 기술을 이용한 MEMS 소자 진공 패키징)

  • 전종인;최혜정;김광성;이영범;김무영;임채임;황건탁;문제도;최원재
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.10 no.1
    • /
    • pp.31-38
    • /
    • 2003
  • In the current electronic technology atmosphere, MEMS (Microelectromechanical System) technology is regarded as one of promising device manufacturing technologies to realize market-demanding device properties. In the packaging of MEMS devices, the packaged structure must maintain hermeticity to protect the devices from a hostile atmosphere during their operations. For such MEMS device vacuum packaging, we introduce the LTCC (Low temperature Cofired Ceramic) packaging technology, in which embedded passive components such as resistors, capacitors and inductors can be realized inside the package. The technology has also the advantages of the shortened length of inner and surface traces, reduced signal delay time due to the multilayer structure and cost reduction by more simplified packaging processes owing to the realization of embedded passives which in turn enhances the electrical performance and increases the reliability of the packages. In this paper, the leakage rate of the LTCC package having several interfaces was measured and the possibility of LTCC technology application to MEMS devices vacuum packaging was investigated and it was verified that improved hermetic sealing can be achieved for various model structures having different types of interfaces (leak rate: stacked via; $4.1{\pm}1.11{\times}10^{-12}$/ Torrl/sec, LTCC/AgPd/solder/Cu-tube; $3.4{\pm}0.33{\times}10^{-12}$/ Torrl/sec). In real application of the LTCC technology, the technology can be successfully applied to the vacuum packaging of the Infrared Sensor Array and the images of light-up lamp through the sensor way in LTCC package structure was presented.

  • PDF