• Title/Summary/Keyword: MEMS Fabrication Process

Search Result 189, Processing Time 0.023 seconds

Mechanical Characteristics of MLCA Anodic Bonded on Si wafers (실리콘기판위에 양극접합된 MLCA의 기계적 특성)

  • Kim, Jae-Min;Lee, Jong-Choon;Yoon, Suk-Jin;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.160-163
    • /
    • 2003
  • This paper describes on anodic bonding characteristics of MLCA(Multi Layer Ceramic Actuator) to Si-wafer using evaporated Pyrex #7740 glass thin-films for MEMS applications. Pyrex #7740 glass thin-films with same properties were deposited on MLCA under optimum RF magneto conditions(Ar 100 %, input power $1\;/cm^2$). After annealing in $450^{\circ}C$ for 1 hr, the anodic bonding of MLCA to Si-wafer was successfully performed at 600 V, $400^{\circ}C$ in - 760 mmHg. Then, the MLCA/Si bonded interface and fabricated Si diaphragm deflection characteristics were analyzed through the actuation test. It is possible to control with accurate deflection of Si diaphragm according to its geometries and its maximum non-linearity is 0.05-008 %FS. Moreover, any damages or separation of MICA/Si bonded interfaces do not occur during actuation test. Therefore, it is expected that anodic bonding technology of MICA/Si wafers could be usefully applied for the fabrication process of high-performance piezoelectric MEMS devices.

  • PDF

AlN Based RF MEMS Tunable Capacitor with Air-Suspended Electrode with Two Stages

  • Cheon, Seong J.;Jang, Woo J.;Park, Hyeon S.;Yoon, Min K.;Park, Jae Y.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.13 no.1
    • /
    • pp.15-21
    • /
    • 2013
  • In this paper, a MEMS tunable capacitor was successfully designed and fabricated using an aluminum nitride film and a gold suspended membrane with two air gap structure for commercial RF applications. Unlike conventional two-parallel-plate tunable capacitors, the proposed tunable capacitor consists of one air suspended top electrode and two fixed bottom electrodes. One fixed and the top movable electrodes form a variable capacitor, while the other one provides necessary electrostatic actuation. The fabricated tunable capacitor exhibited a capacitance tuning range of 375% at 2 GHz, exceeding the theoretical limit of conventional two-parallel-plate tunable capacitors. In case of the contact state, the maximal quality factor was approximately 25 at 1.5 GHz. The developed fabrication process is also compatible with the existing standard IC (integrated circuit) technology, which makes it suitable for on chip intelligent transceivers and radios.

Design, Fabrication and Performance Test of A Non-Vacuum Packaged Single Crystalline Silicon MEMS Gyroscope (대기압형 단결정 실리콘 MEMS 각속도계의 설계, 제작 및 성능 측정)

  • Jung, Hyoung-Kyoon;Hwang, Young-Seok;Sung, Woon-Tahk;Chang, Hyun-Kee;Lee, Jang-Gyu;Kim, Yong-Kweon
    • Proceedings of the KIEE Conference
    • /
    • 2006.07c
    • /
    • pp.1635-1636
    • /
    • 2006
  • In this paper, a non-vacuum packaged single crystalline silicon MEMS gyroscope is designed, fabricated and tested. To reduce air damping of the gyroscope structure for non-vacuum packaging, air damping model is used and damping is minimized by analysis. The inner and outer spring length is optimized by ANSYS simulation for rigid body motion. The gyroscope is fabricated by SiOG(Silicon On Glass) process. The performance of the gyroscope is measured to evaluate the characteristic of the gyroscope. The sensitivity, non-linearity, noise density and the bias stability are measured to 9.7693 mV/deg/s, 04265 %, 2.3 mdeg/s/rtHz and 16.1014 deg/s, respectively.

  • PDF

Microlens Fabrication Method by the Modified LICA Process (변형된 LIGA 공정을 이용한 마이크로렌즈 제작방법)

  • Lee, Sung-Keun;Lee, Kwang-Cheol;Lee, Seung-S.
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.11
    • /
    • pp.2450-2456
    • /
    • 2002
  • Microlenses and microlens arrays are fabricated using a novel fabrication technology based on the exposure of a resist (usually PMMA) to deep X-rays and subsequent thermal treatment. The fabrication technology is very simple and produces microlenses and microlens arrays with good surface roughness (less than 1 nm). The molecular weight and glass transition temperature of PMMA is reduced when it is irradiated with deep X-rays. The microlenses is produced through the effects of volume change, surface tension, and reflow during thermal treatment of irradiated PMMA. The geometry of the microlens is determined by parameters such as the X-ray dose applied to the PMMA, the diameter of the microlens, along with the heating temperature, heating time, and cooling rate in the thermal treatment. Microlenses are produced with diameters ranging from 30 to 1500 ${\mu}{\textrm}{m}$. The modified LIGA process is used not only to construct hemispherical microlenses but also structures that are rectangular-shaped, star-shaped, etc.

Fabrication of the multi-layer structure and Nickel mold with electroforming using KMPR (KMPR을 이용한 다층구조물 제작 및 전해도금을 이용한 니켈몰드 제작)

  • Hwang Sung-Jin;Jung Phill-Gu;Ko Jeung-Sang;Ko Jong-Soo;Jeong Im-Deok;Kim In-Gon
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.143-144
    • /
    • 2006
  • In this paper, we proposed XP KMPR-1050 negative tone resist to replace SU-8 resist for multi-layer micro-structures and thick plating mold fabrication using UV-LIGA process. XP KMPR resist proposed in this paper can be easily striped using a common stripping solution such as NMP without damage of micro-structure. The conditions for the fabrication of XP KMPR micro-structure were optimized by adjustment of exposure and post-exposure bake(PEB). The $140{\mu}m$ -thick and an aspect ratio at least 10 micro-structure and multi-layer structures were successfully fabricated through the process conditions. Through-mold electroplating and PR striping of XP KMPR has been successfully demonstrated.

  • PDF

Thermal Design and Batch Fabrication of Full SiO2 SThM Probes for Sensitivity Improvement (주사탐침열현미경의 감도향상을 위한 전체 실리콘 산화막 열전탐침의 열적설계 및 일괄제작)

  • Jaung, Seung-Pil;Kim, Kyeong-Tae;Won, Jong-Bo;Kwon, Oh-Myoung;Park, Seung-Ho;Choi, Young-Ki;Lee, Joon-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.10
    • /
    • pp.800-809
    • /
    • 2008
  • Scanning Thermal Microscope (SThM) is the tool that can map out temperature or the thermal property distribution with the highest spatial resolution. Since the local temperature or the thermal property of samples is measured from the extremely small heat transferred through the nanoscale tip-sample contact, improving the sensitivity of SThM probe has always been the key issue. In this study, we develop a new design and fabrication process of SThM probe to improve the sensitivity. The fabrication process is optimized so that cantilevers and tips are made of thermally grown silicon dioxide, which has the lowest thermal conductivity among the materials used in MEMS. The new design allows much higher tip so that heat transfer through the air gap between the sample-probe is reduced further. The position of a reflector is located as far away as possible to minimize the thermal perturbation due to the laser. These full $SiO_2$ SThM probes have much higher sensitivity than that of previous ones.

Design and fabrication of Q-band MIMIC oscillator using the MEMS technology (MEMS 기술을 이용한 Q-band MIMIC 발진기의 설계 및 제작)

  • Baek Tae-Jong;Lee Mun-Kyo;Lim Byeong-Ok;Kim Sung-Chan;Lee Bok-Hyung;An Dan;Shin Dong-Hoon;Park Hyung-Moo;Rhee Jin Koo
    • Proceedings of the IEEK Conference
    • /
    • 2004.06b
    • /
    • pp.335-338
    • /
    • 2004
  • We suggest Q-band MEMS MIMIC (Millimeter wave Monolithic Integrated Circuit) HEMT Oscillator using DAML (Dielectric-supported Airgapped Mcrostrip Line) structure. We elevated the signal lines from the substrate using dielectric post, in order to reduce the substrate dielectric loss and obtain low losses at millimeter-wave frequency. These DAML are composed with heist of $10\;{\mu}m$ and post size with $20\;{\mu}m\;{\times}\;20\;{\mu}m$. The MEMS oscillator was successfully integrated by the process of $0.1\;{\mu}m$ GaAs PHEMTs, CPW transmission line and DAML. The phase noise characteristic of the MEMS oscillator was improved more than 7.5 dBc/Hz at a 1 MHz offset frequency than that of the CPW oscillator And the high output power of 7.5 dBm was measured at 34.4 GHz.

  • PDF

Anodic bonding Characteristics of MLCA to Si-wafer Using Evaporated Pyrex #7740 Glass Thin-Films for MEMS Applications (파이렉스 #7740 유리박막을 이용한 MEMS용 MLCA와 Si기판의 양극접합 특성)

  • Chung, Gwiy-Sang;Kim, Jae-Min;Yoon, Suk-Jin
    • Journal of Sensor Science and Technology
    • /
    • v.12 no.6
    • /
    • pp.265-272
    • /
    • 2003
  • This paper describes anodic bonding characteristics of MLCA (Multi Layer Ceramic Actuator) to Si-wafer using evaporated Pyrex #7740 glass thin-films for MEMS applications. Pyrex #7740 glass thin-films with same properties were deposited on MLCA under optimum RF magneto conditions(Ar 100%, input power $1\;W/cm^2$). After annealing in $450^{\circ}C$ for 1 hr, the anodic bonding of MLCA and Si-wafer was successfully performed at 600 V, $400^{\circ}C$ in - 760 mmHg. Then, the MLCA/Si bonded interface and fabricated Si diaphragm deflection characteristics were analyzed through the actuation test. It is possible to control with accurate deflection of Si diaphragm according to its geometries and its maximum non-linearity is 0.05-0.08 %FS. Moreover, any damages or separation of MLCA/Si bonded interfaces do not occur during actuation test. Therefore, it is expected that anodic bonding technology of MLCA/Si wafers could be usefully applied for the fabrication process of high-performance piezoelectric MEMS devices.

Fabrication of Three-Dimensional Micro-Shell Structures Using Two-Photon Polymerization (이광자 흡수 광중합에 의한 3차원 마이크로 쉘 구조물 제작)

  • Park Sang Hu;Lim Tae Woo;Yang Dong-Yol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.7 s.238
    • /
    • pp.998-1004
    • /
    • 2005
  • A nano-stereolithography (NSL) process has been developed for fabrication of 3D shell structures which can be applied to various nano/micro-fluidic devices. By the process, a complicated 3D shell structure on a scale of several microns can be fabricated using lamination of layers with a resolution of 150 nm in size, so it does not require the use of my sacrificial layer or any supporting structure. A layer was fabricated by means of solidifying liquid-state monomers using two-photon absorption (TPA) induced using a femtosecond laser processing. When the polymerization process is finished, unsolidified liquid state resins can be removed easily by dropping several droplets of ethanol fur developing the fabricated structure. Through this work, some 3D shell structures, which can be applied to various applications such as nano/micro-fluidic devices and MEMS system, were fabricated using the developed process.

A Study on the Argon Laser Assisted Thermochemical Micro Etching (레이저를 이용한 미세에칭에 관한 연구)

  • 박준민;정해도
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.844-847
    • /
    • 2001
  • The application of laser direct etching has been discussed, and believed that the process is a very powerful method for micro machining. This study is focused on the micro patterning technology using laser direct etching process with no chemical damage of the material surface. A new introduced concept of energy synergy effect for surface micro machining is the combination of chemically ion reaction and laser thermal process. The etchant can't etch the material in room temperature, and used Ar laser has not power enough to machine. But, the machining is occurred in local area of the material by the combined energy. Using this process, the material is especially prevented from chemical damage for electric property. We have tested this new concept, and achieved a line with $1{mu}m$ width. The Ar laser with 488nm wavelength was used. The material was Si(100) wafer, and etchant is KOH solution. The application and flexibility of this process is in great hopes for MEMS structures and fabrication of the micro electric device parts.

  • PDF